	Certified Tester, Foundation Level (CTFL):

Lesson 1: Understanding Software Development Models
A. Understand the Waterfall Model

Software Development Models

Software Development Models

Types of Software Development Models

Types of Software Development Models

The Waterfall Model

The Requirements Analysis Phase

The Design Phase

The Coding Phase

The Integration Phase

The Implementation Phase

The Maintenance Phase

B. Understand Iterative-Incremental Development Models

Iterative-Incremental Development Models

Working of Iterative-Incremental Development Models

The Prototyping Model

The Spiral Model

Rapid Application Development

Rational Unified Process

The Agile Model

The Agile Model

C. Understand the V-Model

The V-Model

Verification Phases

Validation Phases

Characteristics of Testing in a Project Life Cycle

Lesson 2: Understanding Testing
A. Understand the Importance of Testing

Software Testing

The Need of Software Testing

The Role of Software Testing

The Scope of Software Testing

Objectives of Software Testing

B. Identify Basic Testing Terms

Software Quality

Software Quality

Quality Characteristics

The Relationship Between Testing and Software Quality

Failure

Defects

Errors

Root Causes

Debugging

C. Understand Testing Principles

The Testing Shows Presence Of Defects Principle

The Exhaustive Testing Is Impossible Principle

The Early Testing Principle

The Defect Clustering Principle

The Pesticide Paradox Principle

The Testing Is Context Dependent Principle

The Absence-Of-Errors Fallacy Principle

D. Understand the Test Process

The Fundamental Test Process

The Fundamental Test Process

The Test Planning and Control Phase

The Test Planning and Control Phase

The Test Analysis and Design Phase

The Test Analysis and Design Phase

The Test Implementation and Execution Phase

The Test Implementation and Execution Phase

The Evaluating Exit Criteria and Reporting Phase

The Evaluating Exit Criteria and Reporting Phase

The Test Closure Phase

The Test Closure Phase

E. Identify Test Documents

Test Policies

Test Strategies

Test Plans

Test Plans

Test Cases

Test Procedures

Release Notes

Incident Reports

Incident Reports

Test Summary Reports

Test Summary Reports

F. Understand the Responsibilities of the Testing Team

The Outlook to Testing

The Psychology of Testing

Methods to Communicate Defects

Methods to Communicate Defects

Independence of Testing

Levels of Test Independence

Levels of Test Independence

Responsibilities of Testers

Responsibilities of Testers

Responsibilities of Test Leaders

Responsibilities of Test Leaders

Lesson 3: Understanding Test Levels
A. Understand Component Testing

Test Levels

Test Levels

Component Testing

Component Testing

Objectives of Component Testing

Objectives of Component Testing

Component Testing Tasks

Component Testing Tasks

Stubs

Stubs

Drivers

Drivers

Test-Driven Development

B. Understand Integration Testing

Integration Testing

Integration Testing

Integration Testing Objects

Objectives of Integration Testing

Objectives of Integration Testing

Importance of Component Testing

Importance of Component Testing

Limitations to Integration

Limitations to Component Integration

Integration Strategies

Integration Strategies

Monitors

C. Understand System Testing

System Testing

System Testing

Disadvantages of Tests in the Actual Operational Environment

Objectives of System Testing

System Testing Problems

System Testing Problems

Simulators

D. Understand Acceptance Testing

Acceptance Testing

Acceptance Testing

Acceptance Criteria

Acceptance Criteria

Types of Acceptance Testing

Lesson 4: Understanding Test Types
A. Understand Functional Testing

Test Types

Test Types

Functionality

Characteristics of Functionality

Functional Testing

Functional Testing

Requirements-Based Testing

Requirements-Based Testing

Business Process-Based Testing

Business Process-Based Testing

Interoperability Testing

Interoperability Testing

Security Testing

Security Testing

B. Understand Nonfunctional Testing

Nonfunctional Testing

Nonfunctional Testing

Performance Testing

Performance Testing

Types of Performance Testing

Usability Testing

Usability Testing

Maintainability Testing

Maintainability Testing

Reliability Testing

Reliability Testing

Portability Testing

Portability Testing

C. Understand Static Testing

Static Testing

Static Testing

Benefits of Static Testing

Reviews

Reviews

Benefits of Reviews

The Review Process

The Review Process

Roles and Responsibilities of Reviews

Types of Review

Walkthroughs

Walkthroughs

Objectives of Walkthroughs

Characteristics of Walkthroughs

Technical Reviews

Technical Reviews

Objectives of Technical Reviews

Characteristics of Technical Reviews

Inspections

Inspections

Objectives of Inspections

Characteristics of Inspections

Informal Reviews

Informal Reviews

Objectives of Informal Reviews

Characteristics of Informal Reviews

Success Factors for Reviews

Static Analysis

Static Analysis

Coding Standards

Code Metrics

Code Structure

Code Structure

The Benefits of Static Analysis

Defects Detected in Static Analysis

D. Understand Dynamic Testing

Dynamic Testing

Dynamic Testing

Black-Box Testing

Black-Box Testing

White-Box Testing

White-Box Testing

E. Understand Other Test Types

Smoke Testing

Smoke Testing

Retesting

Retesting

Regression Testing

Regression Testing

Degrees of Regression Testing

Complete Regression Tests

Maintenance Testing

Maintenance Testing

Typical Problems Detected During Maintenance

Triggers for Maintenance Testing

Comparison Between Developmental and Maintenance Testing

Comparison Between Developmental and Maintenance Testing

Robustness Testing

Robustness Testing

Lesson 5: Planning and Estimating Tests
A. Understand Test Planning

Test Management

Test Management

Test Planning

Test Planning

Objectives of Test Planning

Test Planning Activities

Test Planning Activities

Test Monitoring

Test Monitoring

Test Control

Test Control

Configuration Management

Configuration Management

Version Control

The Test Basis

The Test Basis

Test Plans

When to Create a Test Plan

B. Identify Risks

Risk

Risk

Product Risk

Product Risk

Project Risk

Project Risk

Risk Identification

Risk Identification

Risk Analysis

Risk Analysis

Risk Mitigation and Contingencies

Risk Mitigation and Contingencies

Risk-Based Testing

Risk-Based Testing

C. Specify the Test Approach

The Test Approach

The Test Approach

Preventive Test Approaches

Reactive Test Approaches

Types of Test Approaches

Selection of a Test Approach

Entry Criteria

Entry Criteria

Exit Criteria

Exit Criteria

Factors Affecting Exit Criteria

Types of Exit Criteria

D. Understand Test Scheduling

Test Estimation

Expert-Based Test Estimation

Metric-Based Test Estimation

Metric-Based Test Estimation

Factors Affecting Test Effort

The Test Environment

The Test Schedule

E. Create a Test Plan
The IEEE Test Plan Template

The Test Plan Identifier

The Introduction Section of the Test Plan

The Introduction Section of the Test Plan

Test Items

Test Items

Features to Be Tested

Features to Be Tested

Features Not to Be Tested

Features Not to Be Tested

The Item Pass/Fail Criteria Section

The Suspension And Resumption Criteria Section

Test Deliverables

Test Deliverables

Test Tasks

Test Tasks

The Responsibilities Section

The Approval Section

Lesson 6: Applying Test Design Techniques
A. Apply Specification-Based Techniques

Test Design

Test Design

Test Design Specification

Specification-Based Techniques

Equivalence Partitions

Equivalence Partitioning

Equivalence Partitioning

Boundary Value Analysis

Boundary Value Analysis

Conditions and Actions

Conditions and Actions

Decision Tables

Cause-Effect Graphic Testing

Cause-Effect Graphic Testing

Decision Table Testing

State Transition Diagrams

State Tables

State Tables

State Transition Testing

State Transition Testing

Use Cases

Use Case Testing

B. Apply Structure-Based Techniques

Structure-Based Techniques

Structure-Based Techniques

Coverage

Limitations of Test Coverage

Limitations of Test Coverage

Code Coverage

Instrumentation

Statement Coverage

Statement Testing

Decision Coverage

Decision Testing

Decision Testing

Condition Coverage

Multiple Condition Coverage

Condition Determination Coverage

Linear Code Sequence And Jump

LCSAJ Coverage

LCSAJ Testing

C. Apply Experience-Based Techniques

Experience-Based Techniques

Error Guessing

Fault Attack

Exploratory Testing

Exploratory Testing

Test Technique Selection

Lesson 7: Developing Tests
A. Understand the Test Development Process

The Test Development Process

Test Conditions

Test Conditions

Traceability

Test Data

Test Cases

Test Oracles

Test Oracles

B. Create Test Cases

The IEEE Test Case Specification Template

Features of Test Cases

The Purpose of Test Cases

The Test Case Specification Identifier

The Test Items Section of the Test Case

The Test Items Section of Test Case

Input Specifications

Input Specifications

Output Specifications

Output Specifications

Environmental Needs

Special Procedural Requirements

Special Procedural Requirements

Inter-Case Dependencies

Lesson 8: Implementing Tests
A. Create Test Suites

Test Procedures

Test Procedures

Test Scripts

Components of a Test Procedure Specification

Components of a Test Procedure Specification

Procedure Steps

Test Suites

Test Suites

The Test Execution Schedule

B. Create Test Logs

Test Logs

Components of Test Logs

Components of Test Logs

Activity and Event Entries

Activity and Event Entries

Actual Results

Test Status

Anomalous Events

Incident Report Identifiers

C. Create Incident Reports

Incidents

Incidents

Incident Resolution

The Incident Life Cycle

Types of Incident Resolution

Types of Incident Resolution

Incident Logging

Incident Reports

Incident Reports

Merits of Incident Reports

Merits of Incident Reports

Components of Incident Reports

Components of Incident Reports

The IEEE Incident Report Template

The IEEE Incident Report Template

Summaries

Summaries

Incident Description

Impact

Impact

Severity

Priority

Lesson 9: Reporting on Tests and Performing Closure Activities
A. Identify Test Metrics and Measurements

Metrics

Types of Test Metrics Information

Types of Test Metrics Information

Measurements in Software Testing

Measurements in Software Testing

Defect Density

Defect Density

Failure Rate

B. Create Test Summary Reports

Test Summary Reports

Test Summary Reports

Preconditions for Creating a Test Summary Report

Preconditions for Creating a Test Summary Report

Guidelines for Creating a Test Summary Report

Guidelines for Creating a Test Summary Report

Merits of Test Summary Reports

Merits of Test Summary Reports

Components of a Test Summary Report

The IEEE Test Summary Report Template

The IEEE Test Summary Report Template

Tasks to Evaluate Exit Criteria

Tasks to Evaluate Exit Criteria

C. Perform Test Closure Activities

Test Closure

Test Closure

Test Closure Activities

Test Closure Activities

Factors Affecting Test Closure Activities

Factors Affecting Test Closure Activities

Testware

Release Notes

Sign-Off

Lesson 10: Identifying Testing Tools
A. Understand Automation Tools

Test Automation

Automation Tools

Automation Tools

Test Tool Classification

Test Tool Classification

The Probe Effect

B. Identify Tools to Manage the Testing Process

Test Management Tools

Test Management Tools

Features of Test Management Tools

Features of Test Management Tools

Requirements Management Tools

Requirements Management Tools

Features of Requirements Management Tools

Features of Requirements Management Tools

Incident Management Tools

Incident Management Tools

Features of Incident Management Tools

Features of Incident Management Tools

Configuration Management Tools

Configuration Management Tools

Features of Configuration Management Tools

Features of Configuration Management Tools

C. Identify Tools for Static Analysis

Compilers

Compilers

Static Analysis Tools

Features of Static Analysis Tools

Features of Static Analysis Tools

Review Process Support Tools

Review Process Support Tools

Features of Review Process Support Tools

Features of Review Process Support Tools

Modeling Tools

Features of Modeling Tools

Features of Modeling Tools

D. Identify Tools for Test Specification

Test Design Tools

Test Design Tools

Test Data Preparation Tools

Features of Test Data Preparation Tools

Features of Test Data Preparation Tools

E. Implement Tools to Execute and Log Tests

Data-Driven Testing

Data-Driven Testing

Keyword-Driven Testing

Test Execution Tools

Test Execution Tools

Features of Test Execution Tools

Features of Test Execution Tools

Test Harness Tools

Features of Test Harness Tools

Features of Test Harness Tools

Test Comparators

Test Comparators

Coverage Measurement Tools

Coverage Measurement Tools

Security Testing Tools

Security Testing Tools

Features of Security Testing Tools

Features of Security Testing Tools

F. Implement Performance Testing and Monitoring Tools

Dynamic Analysis Tools

Dynamic Analysis Tools

Performance Testing Tools

Performance Testing Tools

Features of Performance Testing Tools

Features of Performance Testing Tools

Types of Performance Testing Tools

Features of JMeter

Features of JMeter

Monitoring Tools

Features of Monitoring Tools

Features of Monitoring Tools

G. Identify Other Testing Tools

Functional Testing Tools

Functional Testing Tools

Source Code Testing Tools

Profilers

Metrics Calculators

Integration Management Tools

Support Tools

Documentation Tools

Protocol Testing Tools

Conformance Testing Tools

Debugging Tools

Debugging Tools

Tools for Specific Application Areas

H. Introduce Tools into an Organization

Considerations to Select a Tool for an Organization

Considerations to Select a Tool for an Organization

Objectives of a Pilot Project

Success Factors for the Deployment of a Tool

Success Factors for the Deployment of a Tool

Appendix A: Certified Tester, Foundation Level

Lesson Labs

Glossary

About This Course

You know how to implement software testing practices and methodologies in real-life work situations. Now that you have this basic knowledge, you may want to increase your software testing skills or obtain a certification in software testing. This course builds on your existing software engineering and software testing concepts to enhance your fundamental software testing skills and concepts so that you can implement them in practical applications of software testing. In addition, this course prepares you for the International Software Testing Qualifications Board (ISTQB) - Certified Tester Foundation Level (CTFL) certification.

After acquiring basic knowledge in software testing, you may want to accelerate your career growth by obtaining an international certification in software testing, that is ISTQB CTFL. This certification would enable you to implement global testing methodologies in software testing. Consider a scenario where your organization has acquired a critical software-testing project. To execute this project, your organization wants to ensure that the people testing the software have attained the right training, skills, and experience. Therefore, the organization entrusts the responsibility of executing this project with ISTQB certified testers. The ISTQB CTFL certification helps organizations develop confidence that people conducting testing have the required qualification to do their job right.

To learn more about ISTQB, refer to http://www.istqb.org/index.htm.

Course Description

Target Student

This course is intended for both entry-level and experienced IT professionals, such as software engineers and software test engineers, interested in developing software testing skills or obtaining a certification in software testing.

Course Prerequisites

To take this course we recommend that students have familiarity with basic principles of software testing, such as software models, the software testing life cycle, testing approaches, and testing types. The students also need to have a basic understanding of creating test plans, creating and executing test cases, and managing incidents.

Suggested Element K course: Introduction to Software Testing
How To Use This Book

As a Learning Guide

Each lesson covers one broad topic or set of related topics. Lessons are arranged in order of increasing proficiency with Certified Tester, Foundation Level; skills you acquire in one lesson are used and developed in subsequent lessons. For this reason, you should work through the lessons in sequence.

We organized each lesson into results-oriented topics. Topics include all the relevant and supporting information you need to master Certified Tester, Foundation Level, and activities allow you to apply this information to practical hands-on examples.

You get to try out each new skill on a specially prepared sample file. This saves you typing time and allows you to concentrate on the skill at hand. Through the use of sample files, hands-on activities, illustrations that give you feedback at crucial steps, and supporting background information, this book provides you with the foundation and structure to learn Certified Tester, Foundation Level quickly and easily.

As a Review Tool

Any method of instruction is only as effective as the time and effort you are willing to invest in it. In addition, some of the information that you learn in class may not be important to you immediately, but it may become important later on. For this reason, we encourage you to spend some time reviewing the topics and activities after the course. For additional challenge when reviewing activities, try the "What You Do" column before looking at the "How You Do It" column.

As a Reference

The organization and layout of the book make it easy to use as a learning tool and as an after-class reference. You can use this book as a first source for definitions of terms, background information on given topics, and summaries of procedures.

Course Objective

In this course, you will prepare for the International Software Testing Qualifications Board (ISTQB) - Certified Tester Foundation Level (CTFL) certification.

You will:

· describe various software development models.

· explain testing.

· explain test levels.

· explain test types.

· plan and estimate tests.

· apply test design techniques.

· develop tests.

· implement tests.

· report tests and perform test closure activities.

· identify testing tools.

Course Requirements

Hardware:

For this course, you will need one computer for each student and one for the instructor. The minimum hardware components required for each computer are:

· A minimum of 250 MB of hard disk space for installing Java Runtime Environment (JRE), JMeter, and Linkcheker.

· 64 MB of RAM or higher.

· Intel®/Celeron® (or similar) processor with a minimum of 300 MHz clock speed.

· CD-ROM drive.

· Mouse or other pointing device.

· 1024 x 768 resolution monitor recommended.

· Internet® connection.

· Projection system to display the instructor's computer screen.

Software:

· Microsoft® Windows® XP Professional® (SP2) or Microsoft® Windows® 2000 (SP2), both 32 bit.

· Java 2 Runtime Environment v. 1.4.2 – installation package.

· Jakarta-jmeter-2.3.2.zip – installation package.

· REL Link Checker Lite 1.0 – installation package.

· Internet Explorer® 6 or higher.

Class Setup

1. Install Windows XP Professional on an empty partition.

· Leave the Administrator password blank.

· For all other installation parameters, use values that are appropriate for your environment. (See your local network administrator if you need details.)

· On Windows XP Professional, disable the Welcome screen. (This step ensures that students will be able to log on as administrator users regardless of other user accounts existing on computers). Click Start and choose Control Panel→User Accounts. Click Change The Way Users Log On And Off. Uncheck Use Welcome Screen. Click Apply Options.
· On Windows XP Professional, install Service Pack 2. Use the Service Pack installation defaults.

2. Download Java 2 Runtime Environment v. 1.4.2 – installation package.

· In Internet Explorer, navigate to the http://java.sun.com/j2se/1.4.2/download.html link.

· Under the J2SE v 1.4.2_19 JRE includes the JVM technology section, click the Download J2SE JRE link.

· On the Downloads page, under the Select Platform and Language for your download section, select Windows from the Platform drop-down list.

· Check the I agree to the Java 2 Runtime Environment (J2RE) Standard Edition 1.4.2 License Agreement check box.

· Click the Continue button.

· Under the Available Files section, click the j2re-1_4_2_19-windows-i586-p.exe link.

· In the File Download dialog box, click Save
· In the Save As dialog box, from the Save in list, select the C:\ drive and click Save
3. Download Jakarta-jmeter-2.3.2.zip – installation package.

· In Internet Explorer, navigate to the http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi link.

· Under the KEYS section, click the archives link.

· Under the Name section, click the binaries/ link.

· Scroll down and click the jakarta-jmeter-2.3.2.zip link.

· In the File Download dialog box, click Save
· In the Save As dialog box, from the Save in list, select the C:\ drive and click Save
4. Download REL Link Checker Lite 1.0 – installation package.

· In Internet Explorer, navigate to the http://download.cnet.com/REL-Link-Checker-Lite/3000-10248_4-9426104.html link.

· Click the Download Now link.

· If the File Download dialog box does not appear, then click the click here link.

· In the File Download dialog box, click Save
· In the Save As dialog box, from the Save in list, select the C:\ drive and click Save
5. Set the home page of Internet Explorer to about:blank.

· Click Start→ Internet Explorer
· Click Tools→ Internet Options
· On the General tab, under the Home page section click the Use blank button.

· In the Internet Options dialog box, click OK
6. Install Java Runtime Environment.

· Click Start→ My Computer
· Double-click the C drive.

· Double-click j2re-1_4_2_19-windows-i586-p.exe
· In the Open File dialog box, click Run
· In the Java 2 Runtime Environment, SE v1.4.2_19 – License dialog box, accept the license agreement, and click Next
· Under Please select a setup type, select Typical, and click Next
· When the installation completes, click Finish.

7. Install JMeter.

· Click Start→ My Computer
· Double-click the C drive.

· Extract the files in the jakarta-jmeter-2.3.2.zip file into the C drive. Right-click jakarta-jmeter-2.3.2.zip, and click Extract All
· On the welcome page, click Next
· Under Select a Destination, click Next
· Under Extraction Complete, uncheck the Show extracted files check box, and click Finish
8. Install Link Checker.

· Click Start→ My Computer
· Double-click the C drive.

· Extract the files in the rlc.zip file into the C drive. Right-click rlc.zip, and click Extract All
· On the welcome page, click Next
· Under Select a Destination, click Next
· Under Extraction Complete, uncheck the Show extracted files check box, and click Finish
· Double-click setup.exe
· On the Welcome page, click Next
· On the License agreement page, click Yes
· On the Readme information page, click Next
· On the Program group page, click Next
· On the Select installation directory page, click Next
· On the Start installation page, click Next
· On the Installation complete page, click OK
9. Copy data and solution files.

· From the course CD-ROM, copy 085046Data folder to the C drive. This folder contains all the data files that you will use to complete this course.

· Within each lesson folder, you will find a Solution folder. This folder contains solution files for the lesson's activities and lesson lab, which can be used by students to check their end results.

List of Additional Files

On the first page of each lesson is a list of files that students open to complete the activities in the lesson. Following is a list of additional files that students don’t open, but that are necessary for this course. Do not delete these files.

Lesson
Filename and Path
Lesson 1

enus_085046_01_1_solution.zip

Lesson 2

enus_085046_02_1_solution.zip

Lesson 3

enus_085046_03_1_solution.zip

Lesson 4

enus_085046_04_1_solution.zip

Lesson 5

enus_085046_05_1_solution.zip

Lesson 6

enus_085046_06_1_solution.zip

Lesson 7

enus_085046_07_1_solution.zip

Lesson 8

/085046Data/Implementing_Tests/Solution//execution_reports.doc,

Lesson 9

/085046Data/Reporting_Tests/Solution//test_log.doc,

Lesson 10

enus_085046_10_1_solution.zip

Lesson 1
Understanding Software Development Models
Lesson Objectives:

In this lesson, you will describe various software development models.

You will:

· Explain the waterfall model.

· Explain iterative-incremental development models.

· Explain the V-model.

Introduction

You are already aware of the various software development models, such as the waterfall model, iterative-incremental development models, and V-model. In order to perform testing, it is imperative for you to understand how testing fits in the entire software development process. In this lesson, you will recall various software development models.

Similar to most other engineering disciplines, software engineering also follows structured models for developing software. Before you begin the testing process, it is important for you to obtain a bird’s eye view of the Software Development Life Cycle (SDLC) and the way testing fits in the entire process. Consider a scenario where you are working in an organization that develops software, and a new project has just commenced. For better project planning, the project management team has requested you for inputs on what is to be tested, the stages at which testing must occur, the inputs required for testing, the steps in testing, the testing activities that can be executed in parallel or have to be executed in sequence, the properties to test for, and an estimate of the overall testing effort. An understanding of the various software development models and their phases enables you to analyze the correct situation and provide the required inputs.

Topic A

Understand the Waterfall Model

You already have a basic knowledge of various software development models. Before you begin testing, you should be aware of the stages at which testing is performed in different software development models. The most popular software development model is the waterfall model. In this topic, you will recall various phases of the waterfall model.

An understanding of the waterfall model enables you to appreciate the classic approach to the software development process. Consider a scenario where your organization has decided to follow the waterfall model for developing a software product. As you have a thorough understanding of the waterfall model and its different phases, you are able to plan the testing phase better by deducing the deadlines for each phase of the software development process, clearly specify your scope of work and responsibilities, and gain more control over the testing phase. An understanding of the waterfall model provides you with a high-level view of a project life cycle, the interdependencies between its phases, and its flexibility limits to go back to a previous phase, which in turn, enable you to plan your work better.

Software Development Models
Definition:
A software development model is the process used to create a software product, from the initial conception of the idea to the public release of the product. The development model adopted for a project largely depends on project objectives, flexibility limits, the pace, and resource availability; for example, lightweight and high-speed software development models are implemented in projects where the timing of public release is of vital importance, and completely controlled and documented development models are implemented in projects where quality and consistency are significant.

The model applied to a project determines the various stages in the process used to develop a software product. The development model used for a project impacts the testing that you carry out because the planning and execution of test activities are highly correlated with software development activities. To accomplish the required benefits, test activities are organized in accord with the software development life cycle.

Example:

Software Development Models
Definition:
A software development model is a process used to create a software product, from the initial conception of the idea to the public release of the product. The development model adopted for a project largely depends on project objectives, flexibility limits, the pace, and resource availability; for example, lightweight and high-speed software development models are implemented in projects where the timing of public release is of vital importance, while completely controlled and documented development models are implemented in projects where quality and consistency are major considerations.

The model applied to a project determines the various stages in the process used to develop a software product. The development model used for a project impacts the testing that you carry out because the planning and execution of test activities are highly correlated with software development activities. To accomplish the required benefits, test activities are organized in accord with the software development life cycle.

Example:
Types of Software Development Models
You can use different methods to develop a software product, and no model is essentially the best for a specific project. The three most frequently-used software development models are:

· The waterfall model

· The iterative-incremental development models

· The V-model

Each model has its benefits and limitations. When working on projects, you will encounter each one of these models, and will be required to customize your test approach based on the model being used to develop software in your current project.

Types of Software Development Models
You can use different methods to develop a software product, and no model is essentially the best for a specific project. The three most frequently-used software development models are: the waterfall model, the iterative-incremental development models, and the V-model. Each model has its benefits and limitations. When working on projects, you will encounter each one of these models, and will be required to customize your test approach based on the model being used to develop software in your current project.

The Waterfall Model
The waterfall model, also known as the linear-sequential life cycle model, is a software development process in which development activities are performed in a sequential, cascading manner, similar to a waterfall. When using this model, the development life cycle of a software product is divided into distinct phases, each of which has a strict sequential beginning and end. Each phase is fully completed before starting the next phase. And, after a phase is complete, project team members do not go back to implement any changes.

When implementing the waterfall model, the members of a project team start at the top of the waterfall by performing a feasibility study and flow down through various project tasks finishing with implementing the software product in a live environment. Design forms a base for development, which in turn, forms a base for software builds, which further lead to testing. As testing is performed toward the end of the development life cycle, any defects in the software are detected close to implementation. Therefore, it becomes difficult to pass on constructive feedback backwards up the waterfall.

The following illustration shows the phases of the waterfall model:

Figure 1-1: The waterfall model.

Benefits of the Waterfall Model
The waterfall model offers various advantages for small projects, where requirements are clear and well understood. The benefits of this model are:

· It is simple and easy to follow. The development of a software product progresses from concept, through design, coding, integration and testing, implementation, and ends at maintenance.

· It is easy to manage because of its rigidity. Each phase has specific deliverables, for which a schedule can be set with deadlines. The set start and end points of each phase enable both managers and the customer to monitor project progress.

· It is typically well planned, with focus on anticipation- and risk-management, because of its rigidity.

· It is systematic, where each development phase proceeds in an exact order, without any overlaps or iterations. Because of this, a product can proceed through the development process similar to a vehicle in a car wash.

· It emphasizes freezing requirements and product design before coding, which ensures that there is minimal wastage of time and effort, and no rework later.

· It has a documentation-driven approach, where each phase results in specific deliverables. This encourages efficient knowledge transfer in case project team members are at different geographical locations.

Limitations of the Waterfall Model
For projects that are complex and long-term, the waterfall model poses certain limitations. The limitations of this model are:

· It does not permit any changes in the scope, requirements, design, or code during a project life cycle because of its rigidity. It is very difficult to go back and implement any changes if they are identified in the subsequent testing phases. For example, if a requirement is documented as from a to b to d, and later during testing, it is realized that the requirement should have been documented as from a to b to c. Because the waterfall model does not permit any changes later, either the product will be released with an incorrect functionality or it will be reworked on, in which case the rework cost may be too high.

· It does not produce a working version of the software product until quite late in the project life cycle.

· It involves a high amount of risk because mostly customers themselves are not clear about their requirements and tend to change the original requirements as development progresses. This typically happens because they get better visibility and understanding of the product while it gets developed.

The Requirements Analysis Phase
The requirements analysis phase is the first phase of the waterfall model. In this phase, all requirements, which end users may have from the software to be developed, are captured. These requirements are gathered in consultation with probable end users.

Additionally, in the requirements analysis phase, you analyze if captured requirements are valid and it is feasible to incorporate all of them into the system to be developed. In this phase, a requirements specification document is also created by a requirement analyst. This document acts as a base for the next phase of the development model.

Requirements
Requirements are functionalities and constraints that end users expect from a software system. These requirements determine the complete behavior of the software system to be developed. Requirements are recorded in a document known as Software Requirements Specifications (SRS). There are two categories of requirements, functional and nonfunctional.

[image: image3]
The SRS is also referred to as Business Requirement Specifications (BRS).

Functional Requirements
Functional requirements determine the functionality or behavior of a software system, that is, inputs that the system would take, the processing that would be performed on the inputs, and the output that would be generated. An example of a functional specification is that a software system may be required to allow user connectivity.

Nonfunctional Requirements
Nonfunctional requirements do not relate to functionality; instead, they specify the constraints that determine the functioning or quality, such as reliability, efficiency, usability, maintainability, performance, and portability, of a software system. An example of a nonfunctional requirement may be a specific number of users for whom a software system must support connectivity.

The Design Phase
Before starting the actual coding for a software product, developers need to understand what they are going to create and what it should look like. The design phase is the phase that follows the requirements analysis phase, and in this phase requirements are studied and a software solution is designed. A design helps in specifying the overall system architecture, hardware and system requirements, and low-level component and algorithm implementation details.

A design can be at a high-level, focusing on programs that are required and the way they will interact with each other, or it can be at a low-level, including specifications related to the functionality of individual programs and the interface design. In case the software to be developed needs to be completely automated, involving very little or no user interaction, the design may only be a graphical or textual representation of the sequence of events. On the other hand, if the software to be developed needs to be user-centered, the design may include detailed specifications related to the complete experience that users would have as a result of their interactions with the software.

The Coding Phase
After the design of the software product is created, the coding phase takes elements described in the design document as primary input. In this phase, the design of the entire software is divided into small modules or components and then the actual coding begins. Coding involves implementing technical specifications and algorithms as components, such as specialized procedures and functions, and user interface elements. These components are written using conventional programming languages and tools. In the coding phase, all components are developed and tested to verify that they meet their specifications. The testing that is performed in this phase of the development life cycle is referred to as component or unit testing, and typically the developers themselves perform testing at this level.

The Integration Phase
After discrete software components are developed and tested for functionalities, in the integration phase, the components are integrated to form a complete software system and migrated from the development environment to a separate test environment. In addition, this phase involves testing integrated components to verify that all modules are complete, robust, and coordinating with each other. Testing also involves checking that the complete system functions as specified in the SRS. The testing that is performed in this phase of the development life cycle is referred to as system testing.

The Implementation Phase
The implementation phase of the waterfall model follows the integration phase. In this phase, an acceptance walkthrough of the software product is performed for the customer to get formal acceptance of the software system, and the developed and tested software product is deployed at the customer site. The software may be delivered either through the Internet or physical media. Typically, this phase also includes finalizing user documentation, entering or migrating data, and conducting user training and post-implementation evaluation. By the end of the implementation phase, the software system goes live.

The Maintenance Phase
Mistakes and errors in a software system, which are not discovered during the development and testing life cycle, typically arise after the practical implementation of the software. The maintenance phase of the waterfall model takes care of such mistakes and errors. In addition, this phase includes modifying software and its components to improve system efficiency. Modifications to the system may also take place because of any change requests initiated by the customer. This phase is almost never ending, and is referred to as the maintenance phase because all software repair- and continuation-related tasks, which keep surfacing from time to time and need resolution, are undertaken in this phase.

Activity 1-2

Discussing the Waterfall Model
Scenario:
Before you follow the waterfall model in real-world work situations, you may want to check your understanding on this model.

1.

Which statements are true about software development models?


a)
They are used to create software products.

b)
They include all activities from the initial conception of an idea to the public release of a software product.
c)
The model adopted for a project largely depends on the public release date of the software product.
d)
The model applied to a project determines the quality and consistency of a software product.
2.

True or False? You need to customize your test approach based on the model being used to develop software in your current project.

a)
True
b)
False
3.

Which statement is true about the waterfall model?

a)
It is also known as the linear-sequential life cycle model.
b)
It divides the product development life cycle into several overlapping phases.
c)
Each phase may not be fully completed before starting the next phase.
d)
After a phase is complete, the project team members can go back to implement any changes.
4.

True or False? When implementing the waterfall model, members of a project team start at the top of the waterfall by performing a feasibility study and flow down through various project tasks finishing with implementing the software product in a live environment.

a)
True
b)
False
5.

True or False? In the waterfall model, as testing is performed toward the end of the development life cycle, any defects in the software are detected close to implementation, which makes it difficult to pass on constructive feedback backwards up the waterfall.

a)
True
b)
False
6.

Identify the first phase of the waterfall model.
a)
Design
b)
Integration
c)
Implementation

d)
Requirements analysis
7.

In which phase of the waterfall model are all requirements, which end users may have from the software to be developed, gathered in consultation with probable end users?

a)
Requirements analysis
b)
Design
c)
Integration
d)
Maintenance
8.

In which phase of the waterfall model are the overall system architecture, hardware and system requirements, and low-level component and algorithm implementation details specified?
a)
Requirements analysis

b)
Design
c)
Implementation
d)
Maintenance
9.

True or False? A low-level design focuses on programs that are required and the way they will interact with each other, and a high-level design includes specifications related to the functionality of individual programs and the interface design.
a)
True

b)
False
10.

Testing that is performed in the coding phase of the development life cycle is referred to as __________.

a)
Component testing
b)
Integration testing
c)
System testing
d)
User acceptance testing
11.

Which software development phase commences after the coding phase in the waterfall model?
a)
Requirements analysis
b)
Implementation

c)
Integration
d)
Maintenance
12.

True or False? In the integration phase, discrete components are integrated to form a complete software system and migrated from the development environment to a test environment. In addition, this phase involves testing integrated components to verify that all modules are complete, robust, and coordinating with each other.

a)
True
b)
False
13.

The testing that is performed in the integration phase of the development life cycle is referred to as __________.
a)
Component testing
b)
Integration testing

c)
System testing
d)
User acceptance testing
14.

In which phase of the waterfall model is an acceptance walkthrough of the product performed for the customer to get formal acceptance of the software system, and is the developed and tested software product deployed at the customer site?
a)
Requirements analysis
b)
Integration

c)
Implementation
d)
Maintenance
Topic B

Understand Iterative-Incremental Development Models

You learned about various phases of the waterfall model. The next most popular types of software development models are iterative-incremental development models. In this topic, you will recollect various phases of iterative-incremental development models.

Iterative-incremental models, with their repetitive software development processes, enable projects to overcome the limitations of the waterfall model. Consider a scenario where you are part of a team, which needs to decide whether to follow the waterfall or an iterative-incremental model for a software development project. Your client is extremely quality conscious and wants to release the application in parts as they are developed. An understanding of iterative-incremental models enables you to analyze such situations, compare the waterfall and iterative-incremental models, and propose feasible solutions.

Iterative-Incremental Development Models
Iterative-incremental models are repetitive software development models designed to overcome the limitations of the waterfall model. Similar to the waterfall model, iterative-incremental development models also begin with an initial requirements analysis phase, and end with the implementation and maintenance phases, with cyclical transactions in between the phases.

For example, these models do not attempt to complete the requirements analysis phase before moving on to the next phase; instead, development starts by identifying, prioritizing, and implementing parts of the software, which are then reviewed to identify further requirements. This cycle is continually repeated to produce new versions of the software for each cycle of the development process, until the final software product is ready.

In iterative-incremental development models, multiple waterfall development cycles take place, each of which is referred to as an iteration. Each small iteration consists of the requirements analysis, design, coding, integration, and testing phases. Typically, a working version of the software is available after the first iteration; successive iterations build on the first software version.

There are various types of iterative-incremental models: prototyping, spiral, rapid application development, Rational Unified Process, and agile.

Working of Iterative-Incremental Development Models
In a typical iterative-incremental software development model, the given phases are executed cyclically in sequence. The order of these phases depends on the model being used to develop a software product:

1. The Requirements Phase: In this phase, requirements, which end users may have from the software to be developed, are captured, analyzed, and prioritized, based on feasibility and interdependencies.

2. The Design Phase: This phase involves designing a software solution that meets customer requirements. The design may be a new one or an extension of an existing one.

3. The Implementation and Test Phase: In this phase, software components are coded, integrated to form a complete software system, and tested for completeness, robustness, and coordination.

4. The Review Phase: This phase includes evaluating the software version developed in the current iteration, reviewing current requirements, and proposing modifications and add-ons to the current software version.

Figure 1-2: Phases of iterative-incremental development models.

Benefits of Iterative-Incremental Development Models
Iterative-incremental development models offer various advantages over the waterfall model. The benefits of these models are:

· They generate deliverables quickly and early in the software development life cycle.

· They are easy to manage because of small iterations.

· They make the implementation of scope and requirement changes less costly because of their flexibility.

· They make the design, coding, testing, and debugging phases progress faster because these activities are performed for small iterations.

Limitations of Iterative-Incremental Development Models
The limitations of iterative-incremental development models are:

· They do not lay emphasis on gathering all requirements up-front, which may create scope-related problems in the later stages of the project life cycle.

· They involve more time in review and analysis because these activities are performed in almost all phases of the development life cycle.

· Delay in one phase of the development life cycle may have a detrimental effect on the entire software product.

· Some iterative-incremental development models are quite complex to follow.

The Prototyping Model
The prototyping model is a software development model in which a working sample of the final software product is created and tested; this sample is referred to as a prototype. Developers rework on this prototype to make it acceptable, so that the final software product can be created based on the prototype. The prototyping model is best suited for projects where all project requirements are not known in advance and estimation is not feasible. This model increases flexibility in the development process by allowing the customer and developers to interact and experiment with a working sample of the software. The final development of the software product begins only after the customer is satisfied with the working of the prototype.

Figure 1-3: The prototyping model.

The Spiral Model
The spiral model is a software development model, which combines the features of both the waterfall and prototyping models. Software development in the spiral model includes defining detailed system requirements and creating a preliminary design, similar to the waterfall model. The preliminary design is used to create an initial prototype of the final software product. This prototype goes through an evaluation process for assessing its strengths, weaknesses, and risks. This model is known as the spiral model because it involves various cycles of adding new functionality and releasing subsequent prototypes, with the prototype becoming larger with each iteration. This model is typically used for large, complex, and expensive projects.

Figure 1-4: The spiral model.

Rapid Application Development
Rapid Application Development (RAD) is a software development model designed to quickly develop software products. This model involves gathering user requirements to create an initial system design and a prototype, which go through multiple iterations of user testing to clearly define user requirements and to design the final system. RAD also emphasizes reuse of software components, wherever possible. Similar to the waterfall model, this model follows a rigid schedule for deliverables, and typically postpones any design enhancements to the next software version. In the rapid application development model, team communication and reviews are less formal. At times, to enable fast software development, the RAD model may involve compromises in software quality.

Figure 1-5: Rapid Application Development model.

Rational Unified Process
Rational Unified Process (RUP) is a flexible process structure based on the generic iterative-incremental development model, and it can be customized by software development organizations according to their project needs. RUP provides templates, examples, and guiding principles for all stages of the software development process. In this model, the life cycle of a project is divided into four major phases: inception, elaboration, construction, and transition.

The scope of a project and its business need are defined in the inception phase; the elaboration phase involves analyzing project requirements in detail and creating a high-level design; in the construction phase, a low-level design of the software product is created and coding is done; and, in the transition phase, the product is delivered to the customer. Each phase has one primary objective, and involves several iterations of development before the commencement of the next phase.

Figure 1-6: Rational Unified Process model.

The Agile Model
The agile model is based on the generic iterative-incremental model, where teams collaboratively work to implement various iterations in a project life cycle. This model works by dividing project tasks into small increments, involving only short-term planning, and each iteration consists of the requirements analysis, design, coding, integration, testing, and implementation phases. After an acceptance walkthrough of an increment, the customer provides feedback, which can easily be implemented in the next iteration; this approach makes the agile model extremely flexible and minimizes overall risks. An example of the agile model is Extreme Programming (XP), which is a software development model that lays emphasis on customer involvement and promotes teamwork leading to a process that is more responsive to customer needs and helps create better quality software with minimal documentation.

Figure 1-7: The agile model.

The Agile Model
The agile model is based on the generic iterative-incremental model, where teams collaboratively work to implement various iterations in a project life cycle. This model works by dividing project tasks into small increments, involving only short-term planning, and each iteration consists of the requirements analysis, design, coding, integration, testing, and implementation phases. After an acceptance walkthrough of an increment, the customer provides feedback, which can easily be implemented in the next iteration; this approach makes the agile model extremely flexible and minimizes overall risks.

Extreme Programming
An example of the agile model is Extreme Programming (XP), which is a software development model that lays emphasis on customer involvement and promotes teamwork leading to a process that is more responsive to customer needs and helps create better quality software with minimal documentation.

Activity 1-3

Discussing Iterative-Incremental Development Models
Scenario:
Before you follow iterative-incremental software development models in real-world work situations, you may want to check your understanding on these models.

1.

Which statements are true about iterative-incremental development models?
a)
They are designed to overcome the limitations of the V- model.


b)
They begin with an initial requirements specification phase.
c)
They attempt to complete a phase before moving on to the next phase.

d)
They produce a working version of the software after a few initial iterations.
2.

Match the phase numbers of iterative-incremental development models with their respective names.
c
First phase

a.)

The design phase
b.)

The review phase
c.)

The requirements phase
d.)

The implementation and test phase
a
Second phase

d
Third phase

b
Fourth phase

3.

In which phase of a typical iterative-incremental development model are software components coded, integrated to form a complete software system, and tested for completeness, robustness, and coordination?
a)
The design phase
b)
The review phase
c)
The requirements phase

d)
The implementation and test phase
4.

True or False? In the design phase of a typical iterative-incremental development model, the software version developed in the current iteration is evaluated, current requirements are reviewed, and modifications and add-ons to the current software version proposed.
a)
True

b)
False
5.

Match iterative-incremental development models with their respective descriptions.
e
The prototyping model

a.)

Involves creating a design and prototype, which go through multiple iterations of user testing to clearly define requirements and to design the final system.
b.)

Divides project tasks into small increments, involving only short-term planning.
c.)

Provides templates and guiding principles for all stages of the software development process.
d.)

Involves cycles of adding new functionality and releasing subsequent prototypes, with the prototype becoming larger with each iteration.
e.)

Includes creating and testing a working sample of the final software product.
d
The spiral model

a
Rapid application development

c
Rational Unified Process

b
Agile model

6.

Which model is best suited for projects where all requirements are not known in advance?

a)
The prototyping model
b)
The waterfall model
c)
Rational Unified Process
d)
The agile model
7.

True or False? The spiral model combines the features of both the waterfall and prototyping models, and is typically used for large, complex, and expensive projects.

a)
True
b)
False
8.

True or False? To enable fast software development, rapid application development emphasizes reusing software components, following a rigid schedule for deliverables, postponing any design enhancements to the next software version, and carrying out less formal team communication and reviews.

a)
True
b)
False
9.

Match the phase numbers of the Rational Unified Process with their respective names.
d
First phase

a.)

The elaboration phase
b.)

The transition phase
c.)

The construction phase
d.)

The inception phase
a
Second phase

c
Third phase

b
Fourth phase

10.

True or False? Dividing project tasks into small increments; performing short-term planning; carrying out the requirements analysis, design, coding, integration, testing, and implementation phases in each iteration; performing an acceptance walkthrough of the increment; and implementing customer feedback in the next iteration makes a software model extremely flexible and minimizes overall risks.

a)
True
b)
False
Topic C

Understand the V-Model

You learned about the cyclic software development process followed by iterative-incremental development models. Yet another quite popular software model is the V-model. In this topic, you will recapitulate various phases of the V-model.

As the V-model depicts the relationship between each phase of the SDLC and its related testing phase, this model is particularly suited for testing. Consider a scenario where your project team needs to decide on a cost-effective software development model for a complex and time-consuming project. To meet this requirement, the team decides to implement the V-model because this model would enable the team to save a large amount of project time, as testing activities would start at the very beginning of the project life cycle. An understanding of the V-model enables you to save a considerable amount of project time. In addition, this model enables you to gain a good understanding of the project at the very beginning because the testing team is involved early on.

The V-Model
The V-model is a software development model, which follows a sequential path of execution, similar to the waterfall model. The only difference is that development phases that follow the coding phase in a typical waterfall model are bent upward, instead of descending in a linear manner, to form a V shape. This model emphasizes testing and shows the relationship between each phase of the development life cycle and its corresponding testing phase. In the V-model, each phase has a well-defined output, which can be used for starting the next phase and beginning test activities for the current phase. This model consists of several phases; the phases on the left of the V are referred to as verification phases, and the phases on the right are known as validation phases.

The following illustration shows the phases of the V-model:

Figure 1-8: The V-model.

Verification Phases
Verification phases are named such because they involve developing, reviewing, and testing work products to ensure that products meet specified requirements. The V-model consists of four verification phases:

1. The requirements analysis phase: In this phase, requirements, which end users may have from the software to be developed, are captured in a user requirements document. This document is reviewed by the customer as it serves as a base for developing the entire software system. User acceptance tests are also developed in this phase.

2. The system design phase: In this phase, user requirements captured in the requirements document are analyzed for feasibility in implementation. In case any of the requirements is impractical, the requirements document is edited accordingly. This phase also involves creating a software specification document, which contains the overall structure of the software system to be created, menus, dialog boxes, sample business scenarios, and so on. Documents to be used as a base for system testing are also developed at this stage.

3. The architecture design phase: In this phase, a high-level design of the complete software product is created. The design typically includes a list of components to be developed, their functionality, their relationship with other components, and other high-level technical details. This phase also includes the activity of developing the design of integration-level testing.

4. The module design phase: In this phase, a low-level design of the software product is created. Components identified in the high-level design are divided into smaller modules, with functional and logical details for each module, so that developers can immediately begin coding. User-interface details, data types and sizes of all elements, error messages to be displayed, and other input and output details are also identified for all components and modules. The design for component-level testing is also devised in this phase.

Validation Phases
As validation involves examining work products to check if they meet the needs of end users or customers, all testing phases on the right of the V in the V-model are referred to as validation phases. The V-model consists of four validation phases:

1. The component testing phase: This testing phase is carried out by using the design for component-level testing, which is created during the module design phase. In the component testing phase, the code written by software developers is analyzed to eliminate any errors. In addition, this phase involves checking the code for efficiency and adherence to the coding standards followed by the organization.

2. The integration testing phase: This phase of testing is realized by using the integration-level testing design developed during the architecture design phase. In the integration testing phase, the discrete components are tested jointly to detect defects relating to the interaction between the components.

3. The system testing phase: This phase of testing is implemented by the system testing documents developed during the system design phase. In the system testing phase, the entire integrated software system is tested against the system specifications.

4. The user acceptance testing phase: This testing phase is applied by using user-acceptance tests, which are developed during the requirements analysis phase. In this phase, the entire system is checked against the user requirements captured in the requirements document. After the user acceptance test is complete, the system can be delivered to the customer.

Benefits of the V-Model
The V-model offers various advantages to small projects in which requirements are clearly identified. The benefits of the V-model are:

· It is fast, simple, and easy to use.

· It generates specific deliverables in each phase. These deliverables can be used as input for other phases.

· It proactively tracks defects, that is, defects are detected at very early stages in a project life cycle, even before the software is developed; therefore the cost of defects is low in this model.

· It reduces the overall project costs incurred in fixing defects because defects are found in the early stages of the development process.

Limitations of the V-Model
Besides its various advantages, the V-model also has several limitations. The limitations of this model are:

· It does not generate a prototype of the software product until quite late in the project life cycle, unlike iterative-incremental development models.

· It involves reworking on all the documentation, including the test documentation, in case any changes are identified during a project life cycle.

· It does not offer a path for addressing the defects that are detected during various testing phases.

· It requires an established process for implementation because the development and the testing teams work almost concurrently. In case there is a delay in a phase of the development life cycle, it may have a detrimental effect on the other team, which in turn, may adversely affect the entire software product.

Characteristics of Testing in a Project Life Cycle
For any software development life cycle, the characteristics of testing are essentially the same.

· There should be a corresponding testing activity for each software development activity. This ensures that complete testing of a software product and the related documents is performed.

· Each testing phase should have a specific objective so that focused testing is carried out.

· Tests for a phase should be designed along with corresponding software development activity. This ensures that the software product is tested for all attributes and functionalities.

· Documents should be reviewed by testers as soon as draft versions of documents are available so that any changes in the requirements or scope can be identified at the earliest in the software development life cycle.

Activity 1-4

Discussing the V-Model
Scenario:
Before you follow the V-model in real-world work situations, you may want to check your understanding on this model.

1.

Which statements are true about the V-model?
a)
It follows a sequential, cascading path of execution.
b)
It generates a working version of the software after the first iteration.


c)
It emphasizes testing.

d)
It generates a well-defined output after each phase.
2.

True or False? Validation phases involve developing, reviewing, and testing work products to ensure that products meet specified requirements; and verification phases involve examining work products to check that they meet the needs of customers.
a)
True

b)
False
3.

Match the phase numbers of the verification phase of the V-model with their respective names.
d
First phase

a.)

The architecture design phase
b.)

The system design phase
c.)

The module design phase
d.)

The requirements analysis phase
b
Second phase

a
Third phase

c
Fourth phase

4.

Match the verification phases with the testing documents developed in those phases.
c
The requirements analysis phase

a.)

Integration tests
b.)

Component tests
c.)

User acceptance tests
d.)

System tests
d
The system design phase

a
The architecture design phase

b
The module design phase

5.

True or False? In the architecture design phase of the V-model, a low-level design of the software product is created in which high-level components are divided into smaller modules, with functional and logical details for each, so that developers can immediately begin coding.
a)
True

b)
False
6.

In which phase of the V-model is the entire system checked against user requirements captured in the requirements document, and is the system delivered to the customer?
a)
The component testing phase
b)
The integration testing phase
c)
The system testing phase

d)
The user acceptance testing phase
Lesson 1 Follow-up
In this lesson, you recalled the waterfall model, iterative-incremental development models, and V-model. An understanding of various software development models provides a bird’s eye view of the SDLC and the way testing fits in the entire process, which enables you to analyze work situations correctly and provide the required inputs.

1.

How would you use the software engineering concepts that you examined in this lesson?

Answers will vary, but may include:

Based on the type of a project, an appropriate model can be recommended.

A detailed understanding of various software development models would provide a high-level view of how testing fits in the entire software development process.

Best practices of various software development models can be implemented across projects.

2.

Which software development model would you recommend implementing in your projects in order to work efficiently? Why?

Answers will vary, but may include:

The agile and spiral development models because they are flexible and less expensive.

Lesson 2
Understanding Testing
Lesson Objectives:

In this lesson, you will explain testing.

You will:

· Explain the importance of testing.

· Identify basic testing terms.

· Explain testing principles.

· Explain the test process.

· Identify test documents.

· Explain the responsibilities of the testing team.

Introduction

You recalled your knowledge of various software development models. Before performing tests, you need to understand what testing is, its principles, the terms related to it, and the process it follows. In this lesson, you will familiarize yourself with testing.

To deliver software products that are practically bug-free, you need to ensure that the products are thoroughly tested during and after the development process, and all potential problems and risks are identified and appropriately addressed. Gaining familiarity with testing and the process it follows enables you to control the quality of software before releasing it to a customer or into the market.

Topic A

Understand the Importance of Testing

You already know that software systems are an integral part of everyday life. From business applications, such as banks and insurance, to consumer products, such as cars and household appliances, everything is driven by software. All software products go through multiple rounds of rigorous testing during and after development. In this topic, you will understand the importance of testing.

To ensure that the software product that you have developed meets customer requirements, it needs to be tested. Almost all of us have had an experience of software not working as expected. Software not working appropriately and correctly may cause loss of money, time, business reputation, or even injury or death. Understanding the importance of software testing helps you appreciate the need for testing all software products before releasing them to a customer or into the market.

Software Testing
Definition:
Software testing is the process of evaluating a software product with the intent of finding defects in it, if any, and improving its quality. It involves not only the execution of software, but also an analysis and review of the software to prevent defects. In addition, it involves verifying and validating whether software generates the expected output. Software testing is performed with predefined objectives, and is carried out either manually or by using tools.

Example:
Suppose you are planning to buy a car, and have identified the car that suits your budget. Now, the first thing that you will do is take it out on a test drive, for which you will have specific objectives in mind, such as checking the performance, comfort, and space in the car. During the test drive, you will test the car only for these objectives; you will not try to crash the car just to check if the car is unbreakable because that is not your objective of testing.

To evaluate the performance of the car, you will check if the car can reach a certain speed in the time specified by the manufacturer, and there are no vibrations in the car at a particular speed. If any of these conditions to test the performance of the car is not met, then you can report it to the car dealer.

As you tested the performance of the car only against two conditions, you cannot guarantee that the car has no performance issues. Similarly, testing a software product does not guarantee that it is free from all defects.

The Need of Software Testing
Similar to testing everything else that we create, testing of software systems has become an integral part of the software development process. As software systems have become an integral part of life, the percentage of machines and services that either include software or are controlled by software is extremely high. For example, microprocessors and their software control almost all functions in cars, and the smooth functioning of an organization largely depends on the software systems supporting its business processes.

Mistakes can occur anytime during the software development process, and software that does not work as expected, for example, errors in credit card bills and websites not loading correctly, may negatively impact the people using the software applications. However, the impact of these errors may vary; some of the problems that we encounter are quite trivial, but some are extremely costly or dangerous, resulting in loss of money, time, business reputation, or even injury or death. For example, a spelling mistake on a personal website may be trivial; a typing error on an organization’s website may be considered unprofessional; however, a spelling error on a website listing healthcare products may be quite dangerous and may cause health problems to people, and subsequently loss of business for the organization.

To locate and correct our mistakes, we typically check our own work; however, at times, we tend to overlook our mistakes because of the blind spots that are developed toward our own work. To overcome this problem, we need to get someone else to check our work, and that is exactly where testing fits in.

The Role of Software Testing
When developing software products, the discrete software components and the final product are typically tested to see if they meet customer requirements, or there are any differences between customer requirements and the developed product. In case there are any problems in the software product or its components, required corrections need to be made in the product or in the development process.

The dynamic behavior of a software product can be checked only by executing the software in a close-to-real environment, where the software behavior is compared against customer requirements. This makes testing a very crucial activity in the software development process. Testing increases the quality of a product by reducing the problems that may arise as a result of software execution.

In addition, at times, testing is performed and its related documentation maintained to conform to contractual, legal, or industrial standards.

The Scope of Software Testing
The main purpose of testing is to detect problems in software, so that they can be corrected. However, testing cannot ascertain that a software product works flawlessly under all conditions; at best, testing can only ensure that a software product works effectively under given conditions, such as those encountered at workplaces. Exhaustive testing of a software product is impossible because an organization and its customers want to spend no more than necessary in order to maximize their return on investment. This includes only preventing defects that are extremely costly or dangerous.

Typically, testing includes examining and executing code in various environments and conditions, similar to the real-world environment. In addition, testing includes verifying the functionality of a product against its requirements. The extent of testing also takes into consideration the level of risks associated with a software product and project limitations, such as time and budget.

In most software development organizations, dedicated testing teams, independent of software development teams, carry out various tasks related to testing.

The information derived from software testing should typically be sufficient for use by stakeholders to make informed decisions about the project, such as when to plan the release of the software product or its next version, when to hand over the product to the customer, or how software development or testing processes can be made better.

Objectives of Software Testing
All software-testing activities are performed with the primary objective of finding defects. At times, testing is performed to validate various documents created during the software development process; for example, reviewing requirements specifications to ensure that all customer requirements are gathered.

The objectives of all testing activities can be broadly divided into three categories. Each type of testing performed on a software product, its components, and related documents falls under one of these objectives. The given table lists the objectives of testing and their respective descriptions.

Objective

Description

Detect defects

Based on the most common perception, testing is performed to discover defects in the software product that may cause any operational failures. Detecting defects enables you to identify the risks associated with a software product, when the product is put to use.

Gain confidence about the level of quality and provide information

Testing is typically performed to confirm that a software product works as expected and meets its stated requirements. In addition, testing is performed to measure software performance and gather information about it, such as assessing the reliability or defect density of the software. This information enables stakeholders to make informed decisions about the software product, such as planning its release date.

Prevent defects

Designing tests, finding defects early in a project life cycle, and performing document reviews prevent defects from materializing in the software. Detecting defects early not only helps you fix them at a low cost, but also enables you to determine the cause of each defect so that the development process can be improved for subsequent software components, versions, or releases, to prevent further defects.

Determining Objectives for a Project
Different perspectives determine the objectives of testing in real-world work situations. For example, when testing discrete or integrated software components, the objective may be to generate as many errors as possible, so that defects in code can be identified and fixed. When performing an acceptance walkthrough of a software product for a customer, the objective may be to authenticate that the software product functions as stated in the requirements, so that confidence about the level of quality of the software product is increased. When carrying out maintenance testing, one of the objectives is to verify that no new defects are introduced while making changes to the existing software.

Activity 2-2

Discussing the Importance of Testing
Scenario:
Before you test a software product to ensure that it meets all customer and end-user requirements, you may want to check your understanding on the need and importance of testing.

1.

True or False? The main benefit of testing is that it results in improved defects.
a)
True

b)
False
2.

True or False? Testing tries to find situations in which a software product fails to meet the expectations of software developers.
a)
True

b)
False
3.

Select the items that are test objectives.


a)
Detecting defects.
b)
Preventing the use of tools.
c)
Creating test documents.

d)
Gaining confidence about the level of quality and providing information.
4.

An organization purchased an off-the-shelf software application to automate one of their processes. Now, before putting the application to use, they plan to run an acceptance test against the software. Identify the most likely reason for testing.
a)
To train end users.
b)
To collect evidence for a lawsuit.
c)
To detect defects in the software application.

d)
To develop confidence in the software application.
5.

How much testing is enough?
a)
It is easy to answer this question.
b)
It is impossible to answer this question.
c)
The answer depends on the experience of software developers.

d)
The answer depends on customer requirements and the risks associated with the product.
6.

Which test objective is enabled by designing tests, finding defects early in a project life cycle, and performing document reviews?
a)
Detecting defects.
b)
Gaining confidence about the level of quality.

c)
Preventing defects.
d)
Finishing the project on time.
Topic B

Identify Basic Testing Terms

You understood the importance of testing. Before understanding the test process and undertaking testing, you need to be familiar with the basic testing terminology. In this topic, you will familiarize yourself with a few terms that are frequently used in the context of testing.

At times, testing terminology can be quite ambiguous for experienced and non-experienced testers alike. To overcome this hurdle, it is imperative that you clearly understand the meaning of commonly-used testing terms and the differences between them. In addition, an understanding of the terms that are frequently used in the testing context enables you to use these terms appropriately so that you can acclimatize yourself to a global clientele.

Software Quality
Definition:
Software quality refers to the degree to which a component, system, or process meets specified requirements, and/or the needs and expectations of end users and customers. The goal of all software development projects is to deliver a product that meets customer requirements. A project can deliver what the customer needs only if requirements have been identified, interpreted, and implemented correctly. For a software product to meet customer requirements, it is important that not only the product be created correctly, but also that the project be within scope and budget, and meet the agreed timelines. And that is possible only when, as developers and testers, we agree with customers’ understanding of quality.

Example:
Your team has developed an excellent-quality software product; the software meets all its agreed requirements and has virtually no bugs. However, the software product has still not fulfilled customer quality requirements because the project was over budgeted as the software development process was delayed.

The Quality Triangle
The quality triangle, also referred to as the scope triangle, depicts the trade-offs inherent in all projects. It shows the relationship between time, cost, and quality—the three most important factors that determine the success or failure of a project. Under normal circumstances, only one of these factors is fixed and the other two are inversely proportional to each other. For example, typically, time is fixed, and the quality of the software product depends on the available cost or resources. Similarly, if a project team is working toward achieving a specified level of quality, the cost will depend on the available time.

Figure 2-1: The quality triangle.

The quality triangle enables you to select project biases in order to meet project goals.

Software Quality
Definition:
Software quality refers to the degree to which a component, system, or process meets specified requirements, and/or the needs and expectations of end users and customers. The goal of all software development projects is to deliver a product that meets customer requirements. A project can deliver what the customer needs only if requirements have been identified, interpreted, and implemented correctly. For a software product to meet customer requirements, it is important that not only the product be created correctly, but also that the project be within scope and budget, and meet the agreed timelines. And that is possible only when, as developers and testers, we agree with customers’ understanding of quality.

Example:
Your team has developed an excellent-quality software product; the software meets all its agreed requirements and has virtually no bugs. However, the software product has still not fulfilled customer quality requirements because the project was over budgeted as the software development process was delayed.

The Quality Triangle
The quality triangle, also referred to as the scope triangle, depicts the trade-offs inherent in all projects. It shows the relationship between time, cost, and quality—the three most important factors that determine the success or failure of a project. Under normal circumstances, only one of these factors is fixed and the other two are inversely proportional to each other. For example, typically, time is fixed, and the quality of the software product depends on the available cost or resources. Similarly, if a project team is working toward achieving a specified level of quality, the cost will depend on the available time.

The quality triangle enables you to select project biases in order to meet project goals.

Quality Characteristics
Quality characteristics are a set of attributes of a software product using which the quality of the product can be described or evaluated. A set of quality characteristics has been defined by the International Organization for Standardization (ISO). The given table lists the characteristics of quality and their respective descriptions.

Quality characteristics enable both developers and customers to reach an agreement for addressing the general notion of software quality.

Characteristic

Description

Functionality
It is the capability of a software product to provide functions that meet stated and implied needs, when the software is used under specified conditions. This characteristic consists of five sub-characteristics: suitability, accuracy, security, interoperability, and compliance.

Reliability
It is the ability of a software product to perform its required functions under stated conditions for a specified period, or for a specified number of operations. This characteristic is further divided into three sub-characteristics: maturity, fault-tolerance, and recoverability.

Usability
It is the capability of a software product to be understood, learned, used, and attractive to the user, when used under specified conditions. This characteristic is divided into three sub-characteristics: learnability, understandability, and operability.

Efficiency
It is the capability of a software product to provide appropriate performance, relative to the amount of resources used under stated conditions. This characteristic is divided into two sub-characteristics: time behavior and resource behavior.

Maintainability
It is the ease with which a software product can be modified to correct defects, modified to meet new requirements, modified to make future maintenance easier, or adapted to a changed environment. This characteristic consists of four sub-characteristics: stability, analyzability, changeability, and testability.

Portability
It is the ease with which a software product can be transferred from one hardware or software environment to another. This characteristic can be further categorized into four sub-characteristics: installability, replaceability, adaptability, and conformance.

The Relationship Between Testing and Software Quality
You can measure the quality of a software product, such as the number of defects detected and the types of tests performed, by testing the product. Testing enables you to verify both functional and nonfunctional requirements of a software product. In case rigorous testing is performed on a software product, and very few or no defects are detected, the confidence of both developers and customers in quality of the product increases. Well-designed tests typically detect defects in a product, if any; therefore, if a software product passes such tests, it clearly indicates that the overall risk of using the product is very little. Even if defects are detected during testing, the quality of the software product increases after those defects are fixed.

Besides preventing defects, testing enables you to learn from the problems encountered in previous or other projects by identifying the causes of defects. This enables you to improve your existing processes. Process improvement prevents those defects from happening again, and as a result, the overall quality of subsequent software products improves.

Quality Assurance
Taking measures to improve the quality of software systems to be developed in the future is an aspect of quality assurance. Quality assurance is the part of quality management that is focused on providing confidence that all quality requirements will be fulfilled. Some organizations consider tasks such as defining and improving software development standards, processes, trainings, testing, and analyzing defects a part of quality assurance activities.

Failure
Definition:
Failure is the deviation of a software system or its components from their expected delivery, services, or results. A failure is present in a software product if it does not fulfill its given requirements, and exhibits an inconsistency between the actual results or behavior and the expected results or behavior. The actual results and behavior are identified while executing tests on the software product, and the expected results and behavior are typically defined in the requirements specification document.

Example:
Your organization has developed a software product that fulfills its functional requirements, one of which is allowing user connectivity. However, the connectivity is too slow, which shows the presence of a failure in the software product.

Causes of Failure
The typical causes of failure are:

· Presence of defects in a software product or its components.

· Environmental conditions, such as radiation, magnetism, electronic fields, and pollution.

· Human error in interacting with the software product. For example, entering an incorrect input value or misinterpreting an output.

· Deliberate attempts at mishandling a software product.

Defects
Definition:
A defect, also referred to as a bug, a fault, an internal error, or a problem, is a flaw in a software product or its components that can cause the product or the components to fail to perform their required functions. Each defect in a software product is present since the product was originally developed or modified. However, defects appear as failures, only when the software product is executed. All defects may or may not cause failures; some defects stay dormant in code, and you may never get to detect them. Moreover, a defect, such as corruption of data stored in a database, and its corresponding failure may be isolated from each other.

Example:
A software developer creates a program, and a defect in the form of an incorrect statement or data definition in program code causes the program to function incorrectly.

Defect Masking
Defect masking is an occurrence in which one defect prevents the detection of another. Typically, a defect is hidden by one or more other defects in different parts of program code. And in such cases, a failure occurs only after the masking defects are corrected.

Cost of Defects
The cost of finding and fixing defects increases significantly as the life cycle of a project progresses. If a defect is detected in the requirements analysis phase, then finding and fixing it is relatively cheap because you need only correct the Software Requirements Specification (SRS). Similarly, if a defect is detected in the design or coding phase, then fixing it by correcting the design or code is relatively slightly expensive. However, if a defect remains undetected until the implementation phase or other later phases of the software development life cycle, then finding and fixing it is quite expensive because in such a case, the software design, development, and testing teams need to rework on the SRS, design, and code, as one change in requirements may lead to several changes in the design and code.

At times, defects that are detected in the later phases of the software development life cycle are not corrected because fixing them is quite expensive.

Errors
Definition:
An error, also referred to as a mistake, is a human action that generates an incorrect result. Any human being, be it a developer or tester, can commit an error, which may lead to defects in the software product or its components. Executing a software product containing defects may cause it to fail. This implies that if any errors are committed when creating a software product, it may have consequences for the product.

Example:
A developer in the software development team introduces errors in a program because of a misunderstanding about keywords in a programming language.

Causes of Errors
Errors are mostly caused because of the following reasons:

· Complicated software systems and projects, in which many intermediate and final products are developed. This leads to errors in various development activities of a software product being almost inevitable.

· Lack of experience, unavailability of correct information, misunderstanding, misinterpretation, carelessness, fatigue, and time pressure as these factors adversely affect your ability to make sensible decisions.

· Complex technical or business problems, complicated business processes, difficult program code or intricate infrastructure, emerging technologies, and several system transactions. This causes errors because the brain can process information containing only a reasonable amount of complexity.

Root Causes
Definition:
A root cause is the source of a defect that when fixed removes or decreases the occurrence of the defect. When you detect failures, you typically try to identify their starting place. Root cause analysis is an analysis technique designed to identify the root causes of defects. The probability of a defect to reappear is minimized when you direct corrective and preventive actions at its root causes.

Root cause analysis is carried out in a number of ways, the most common of which involves a group that brainstorms and discusses ideas.

Example:
In the testing phase of the development cycle, a software product fails several tests. To understand what went wrong during development, the software development team performs a root cause analysis to identify whether the defects were in the new, old, rewritten, or fixed code. In addition, the development team tries to identify whether it was possible to detect the defects during an earlier phase in the software development life cycle. If the answer is yes, then the team takes action to correct the development process, as required, so that such defects do not appear again.

Debugging
Definition:
Debugging is the process of finding, analyzing, and removing causes of failure in a software product. When testing is performed on a product and its components, typically defects are found, which need to be fixed. To fix the defects, developers examine the code to find out the causes of the defects, correct the code, and then verify that the code executes, as intended. The fixed code is then tested again by the testing team to confirm the fix.

Example:
The following illustration shows that debugging removes defects.

Differences Between Testing and Debugging
Testing and debugging are different activities. Testing can show failures that are caused by defects whereas debugging is a software development activity that includes identifying the causes of defects, fixing the code, and verifying that the defect is fixed correctly. Subsequent confirmation testing by a tester ensures that the defect is properly fixed and no new defects are introduced while performing code fixes. The responsibilities for both testing and debugging are different too, that is, testers test and developers debug.

Activity 2-3

Identifying Basic Testing Terms
Scenario:
Before using the testing terminology in your communication with both experienced and non-experienced testers, you may want to check your understanding on the frequently-used testing terms.

1.

Identify a characteristic of quality.
a)
Feasibility

b)
Usability
c)
Maintenance
d)
Regression
2.

Select the correct definition of quality.
a)
Zero defects
b)
Work as designed
c)
Getting the job done

d)
Conformance to requirements
3.

An error can be described as:
a)
The deviation of a software system or its components from their expected delivery, services, or results.
b)
A flaw in a software product or its components that can cause the product or the components to fail to perform their required functions.

c)
A human action that generates an incorrect result.
d)
The source of a defect such that if it is fixed, the occurrence of the defect is either decreased or removed.
4.

The word 'fault' is also referred to as:

a)
Defect
b)
Error
c)
Incident
d)
Mistake
5.

Debugging:
a)
Involves deliberately adding defects.
b)
Follows the steps of a test procedure.

c)
Includes removing the cause of a failure.
d)
Is a phase in the fundamental testing process.
6.

Who usually performs debugging activities?

a)
Developers
b)
Analysts
c)
Testers
d)
Incident Managers
7.

When what is visible to end users is a deviation from the specified or expected behavior, it is called:
a)
An error
b)
A fault

c)
A failure
d)
A defect
e)
A mistake
8.

The cost of fixing a fault:
a)
Is not important.

b)
Increases as we move the product towards live implementation.
c)
Decreases as we move the product towards live implementation.
d)
Is more expensive when found in the requirements stage.
e)
Can never be determined.
9.

Defect masking is:

a)
A defect hiding another defect.
b)
Masking a fault committed by a developer.
c)
Masking a fault committed by a tester.
d)
Creating a test case which does not detect a defect.
Topic C

Understand Testing Principles

You familiarized yourself with the basic testing terminology. For effective testing, all testing types follow certain principles. In this topic, you will understand various principles on which testing is based.

Similar to most developed engineering disciplines, testing too illustrates certain principles, which provide a basis for selecting and implementing specific techniques and approaches to work situations. These principles have been devised and suggested for effective testing over the past 40 years, and offer general guidelines that are common for all types of testing. Knowledge of these principles enables you to learn and derive benefits from the experiences of testers across the world.

The Testing Shows Presence Of Defects Principle
The testing shows presence of defects principle states that testing can show that defects are present; however, it cannot prove that a software product is defect free. Appropriate testing decreases the possibility of hidden defects in a software product; however, if no defects are found during testing, it is no proof that there are no defects. According to this principle, regardless of the number of successful tests that you execute on a software product, you cannot be sure of the absence of all defects in the product, although the probability of undetected defects in a software product is reduced after software is tested and defects are fixed.

The Exhaustive Testing Is Impossible Principle
The exhaustive testing is impossible principle states that testing everything, including all combinations of inputs and preconditions, is not possible in all cases. A typical software product would require an astronomically high number of test cases. Because of this, every test is always only a sample. And therefore, the testing efforts of a project should be focused on risks and priorities, not on exhaustive testing. This is because customers and project managers want to spend just as much amount on testing as it provides them with a return on investment. As complete testing is unaffordable, testing should be aligned with risks for customers, stakeholders, the project, and software.

Exhaustive Testing
Exhaustive testing is a test approach in which a software product is tested for all combinations of possible input values and preconditions.

The Early Testing Principle
According to the early testing principle, testing activities should begin as early as possible in the software development life cycle. In addition, all testing activities should be focused on the defined objectives. Early testing, such as designing tests early in the software development life cycle, and reviewing specifications and designs, enables you to find and fix defects early, and therefore reduce the cost of fixing them. Similarly, after code is written, developers and testers execute a series of tests on the software product so that they can find and fix defects immediately, with the objective of gaining confidence in the software quality.

The Defect Clustering Principle
The defect clustering principle states that most defects are found in just a few parts of software components; defects are typically not evenly distributed, but they cluster together. Therefore, if many defects are detected in one place in code, there are possibly more defects nearby. Defect clustering happens when specific areas in code become exceptionally complex, or when evolving software versions cause incidental defects. During testing you need to react flexibly to this principle, and focus on such possible defect clusters, keeping them in mind for assessing risks when planning for the testing phase.

The Pesticide Paradox Principle
According to the pesticide paradox principle, if the same tests are repeated over and over again, they tend to lose their effectiveness. To maintain the effectiveness of tests and to fight this pesticide paradox, you need to regularly review and revise test cases. In addition, you need to write new, different tests to check different parts of a software product to possibly find more defects. Over time, as defect clusters get cleaned up, you need to move your focus on to the next set of risks. With time, the focus of testing should change from finding defects in code, to reviewing requirements and designs for defects, and then to identifying ways to improve the development process so that defects in the product are prevented.

The Testing Is Context Dependent Principle
The testing is context dependent principle states that testing is done differently in different contexts. When performing testing, you need to keep in mind the risks associated with the use and environment of a software product. Therefore, you should test different software products in different ways. For every software product, the context, such as objectives and entry and exit criteria, should be determined separately, based on the usage environment of the product. For instance, testing for a safety-critical software product will be done differently from the testing of an e-commerce site.

The Absence-Of-Errors Fallacy Principle
According to the absence-of-errors fallacy principle, merely finding failures and fixing defects in a software product does not guarantee that the product is defect-free, and that the product fully meets user requirements and expectations. This is because customers and end users are not concerned with the number of fixed defects; they are only interested in the software product supporting them in completing their tasks efficiently and effectively. This is typically why some software development process models focus on involving customers and end users early on in the product development life cycle. Another preventive measure intended to avoid this problem is the use of prototypes to ensure that customer requirements are clearly understood.

Activity 2-4

Discussing Testing Principles
Scenario:
Before using testing principles as a basis for selecting and implementing specific techniques and approaches to work situations, you may want to check your understanding on the testing principles.

1.

Which reason does not support the fact that complete testing is impossible?
a)
The number of possible inputs is too much to test.
b)
The possible paths through the program to test are too many.
c)
Financial resources of a project are limited.

d)
The design and user interface issues are too complex to test.
2.

Select the items that are general testing principles.


a)
Testing shows presence of defects
b)
Exhaustive testing is possible
c)
Automation tools can be a great strategy

d)
Absence-of-errors fallacy
3.

A test team consistently detects more than 95 percent defects in each software product under test. However, senior management and executives are still dissatisfied with the performance of the team because according to them, the team misses 5 percent of the defects. Suppose that the product meets almost all end user requirements and that the failures that sometimes occur have been of a very low impact. Which testing principle will help the test leader explain to senior management and executives the reasons why 5 percent of the defects are missed?
a)
Defect clustering
b)
Pesticide paradox
c)
Absence-of-errors fallacy

d)
Exhaustive testing is impossible
Topic D

Understand the Test Process

You learned about various testing principles. You may now want to know about the different activities that are performed during testing and the order in which they are carried out. In this topic, you will understand the fundamental test process.

The most apparent part of the testing phase of any development life cycle is the execution of tests; however, for test execution to be effective and efficient, a considerable amount of time is also spent on activities such as planning the testing process, designing test cases, preparing for test execution, and evaluating test status. Typically, these activities are performed in a sequence. An understanding of the testing process makes you aware of the different stages that a software product goes through during testing. With time, this understanding enables you to define and implement various standards, processes, guidelines, and templates for software testing.

The Fundamental Test Process
The testing phase of the software development process typically follows a sequence of activities. This sequence is followed for all types of testing, and is referred to as the test process. Based on the type of testing, at times, there may be slight differences in the amount of formality with which the testing process is executed. For example, various stages of system testing may be carried out with more formality and documentation than the stages of component testing. The rigidity of the testing process depends on the software context and the level of risks associated with the software product.

The following illustration shows the phases of the testing process:

Figure 2-2: The fundamental test process.

Although, the phases of the testing process are sequential, at times, they may overlap, repeat, or take place concurrently in certain projects.

The Fundamental Test Process
The testing phase of the software development process typically follows a sequence of activities. This sequence is followed for all types of testing, and is referred to as the test process. Based on the type of testing, at times, there may be slight differences in the amount of formality with which the testing process is executed. For example, various stages of system testing may be carried out with more formality and documentation than the stages of component testing. The rigidity of the testing process depends on the software context and the level of risks associated with the software product. Although, the phases of the testing process are sequential, at times, they may overlap, repeat, or take place concurrently in certain projects.

The Test Planning and Control Phase
Test planning is the activity of creating or updating a test plan. This activity includes the following major tasks:

· Identify the software products and their components that are to be tested; the product and project risks that need to be addressed by testing; and the objectives with which testing activities need to be carried out.

· Estimate effort after considering all aspects of software testing.

· Consider the approach using which testing will be carried out, the techniques that will be used, the extent to which software will be tested, the teams to be involved and their schedule, and the output of testing.

· Ensure that the activities you plan adhere to the organization policy and strategy for testing.

· Decide on the required team structure, and set up the test environment with all supporting hardware and software.

· Schedule all testing tasks and activities, so that they can be tracked for timely completion. Determine the tasks that should be completed for testing activities to finish.

Test control is a test management task that includes developing and applying a set of corrective actions to get a test project on track, when monitoring shows a deviation from what was planned. Test control includes the following major tasks:

· Measure and analyze the results of testing, such as the number of reviews and tests performed; passed and failed tests; and the number, type, and severity of reported defects.

· Monitor, document, and share with the team the test progress, the results of testing, the extent of testing, the risks that have been identified, and the assumptions that have been made.

· Regularly report information on testing to project stakeholders, customers, and project managers, so that they can make informed decisions about the project.

· Initiate actions to improve the existing software development, testing, and debugging process.

· Make decisions about testing, based on the existing information on testing, changes to business, and project and product risks.

The Test Planning and Control Phase
Test planning is the activity of creating or updating a test plan. This activity includes identifying software products and their components that are to be tested; product and project risks that need to be addressed by testing; and objectives with which testing activities need to be carried out. It also includes considering the approach using which testing will be carried out, techniques that will be used, the extent to which software will be tested, teams to be involved and their schedule, and the output of testing.

During test planning, you must ensure that activities you plan adhere to the organization policy and strategy for testing. You must also decide on the required team structure, and set up the test environment with all supporting hardware and software. You must schedule all testing tasks and activities, so that they can be tracked for timely completion. You must also determine tasks that should be completed for testing activities to finish.

Test control is a test management task that includes developing and applying a set of corrective actions to get a test project on track, when monitoring shows a deviation from what was planned. Test control includes measuring and analyzing the results of testing, such as the number of reviews and tests performed; passed and failed tests; and the number, type, and severity of reported defects. It also includes monitoring, documenting, and sharing with the team the test progress, results of testing, extent of testing, risks that have been identified, and assumptions that have been made.

Test control also includes regularly reporting information on testing to project stakeholders, customers, and project managers, so that they can make informed decisions about the project. You must initiate actions to improve the existing software development, testing, and debugging process. It also involves making decisions about testing, based on existing information on testing, changes to business, and project and product risks.

The Test Analysis and Design Phase
Test analysis and design is the activity where general objectives of testing, identified during the test-planning phase, are used to create test designs and test procedures. Test analysis and design includes the following major tasks:

· Review the documents that form the basis of tests, such as the requirements document, and architecture, design, and interface specifications.

· Identify the conditions to be tested for a software product; this is based on an analysis of test items, their specifications, and your knowledge about their behavior and structure.

· Design tests to check the software product for potential risks that it may carry, or for other aspects which are of particular interest. Tests are designed based on test conditions.

· Assess the testability of requirements and the software product.

· Identify the infrastructure and tools required for executing tests and design the setup of the test environment.

The Test Analysis and Design Phase
Test analysis and design is the activity where general objectives of testing, identified during the test-planning phase, are used to create test designs and test procedures. Test analysis and design includes reviewing documents that form the basis of tests, such as the requirements document, and architecture, design, and interface specifications. It also includes identifying conditions to be tested for a software product; this is based on an analysis of test items, their specifications, and your knowledge about their behavior and structure.

Test analysis and design also includes designing tests to check the software product for potential risks that it may carry, or for other aspects which are of particular interest. Tests are designed based on test conditions. You must assess the testability of requirements and of the software product. You must also identify the infrastructure and tools required for executing tests and design the setup of the test environment.

The Test Implementation and Execution Phase
Test implementation and execution is the activity where test conditions are converted into test cases, and the test environment is set up. Test implementation includes the following major tasks:

· Develop and prioritize test cases, design the data for tests, and script the instructions for executing tests.

· Create logical groups of test cases, based on common objectives and data, for efficiently executing tests. In addition, create a schedule for executing tests.

· Set up the test environment, and ensure that it is implemented correctly.

Test execution typically includes the following activities:

· Execute individual and groups of test cases, as specified in the instructions for executing tests.

· Record results, and identities and versions of the software product after test execution.

· Compare actual results of tests with expected results.

· Report differences, if any, between actual results and expected results. These differences are analyzed to gather information about underlying defects and their causes.

· Re-execute tests to verify whether corrective actions are taken by developers to fix the defects that led to discrepancies between actual and expected results.

The Test Implementation and Execution Phase
Test implementation and execution is the activity where test conditions are converted into test cases, and the test environment is set up. Test implementation includes developing and prioritizing test cases, designing data for tests, and scripting instructions for executing the tests. During test implementation, you must create logical groups of test cases, based on common objectives and data, for efficiently executing tests. In addition, you must create a schedule for executing tests. You must also set up the test environment, and ensure that it is implemented correctly.

Test execution typically includes executing individual and groups of test cases, as specified in the instructions for executing tests. During test execution, you must record results, and identities and versions of the software product after test execution. Also, you must compare actual results of tests with expected results. You must also report differences, if any, between actual results and expected results. These differences are analyzed to gather information about underlying defects and their causes. You may re-execute tests to verify whether corrective actions are taken by developers to fix the defects that led to discrepancies between actual and expected results.

The Evaluating Exit Criteria and Reporting Phase
Evaluating exit criteria is the activity where the results of test execution are measured against defined objectives. You perform this activity to determine whether enough testing has been done for a software product, and whether testing can be declared complete for the product. Evaluating exit criteria has the following major tasks:

· Compare actual results with expected results; and analyze detected, fixed, retested, and confirmed or unresolved defects.

· Determine if more tests need to be executed or created, or if expected results need to be lowered to address business and project risks.

· Report tests that have been performed on a software product and the outcome of the tests, in a summarized form, so that stakeholders can make decisions about the project.

The Evaluating Exit Criteria and Reporting Phase
Evaluating exit criteria is the activity where the results of test execution are measured against defined objectives. You perform this activity to determine whether enough testing has been done for a software product, and testing can be declared complete for the product. Evaluating exit criteria includes comparing actual results with expected results; and analyzing detected, fixed, retested, and confirmed or unresolved defects.

Evaluating exit criteria also involves determining if more tests need to be executed or created, or if expected results need to be lowered to address business and project risks. It also involves reporting tests that have been performed on a software product and the outcome of the tests, in a summarized form, so that stakeholders can make decisions about the project.

The Test Closure Phase
Test closure is a set of activities in which data from completed test activities is collected to consolidate test experience relating to the testing process. Typically, test closure activities are performed when a software product is delivered, a project is canceled, a specific milestone in the project development life cycle is achieved, or a maintenance release has been completed.

Test closure includes the following major tasks:

· Check planned deliverables against actual deliverables, and ensure that all defects detected in the software product have been appropriately addressed.

· Finalize and archive objects that were produced in various stages of the testing process for later reuse.

· Hand over objects that were produced in the testing process to the organization/team responsible for the maintenance of the software product.

· Evaluate the testing process, and analyze lessons learned for future releases of the same software product or for other projects.

The Test Closure Phase
Test closure is a set of activities in which data from completed test activities is collected to consolidate test experience relating to the testing process. Typically, test closure activities are performed when a software product is delivered, a project is canceled, a specific milestone in the project development life cycle is achieved, or a maintenance release has been completed.

Test closure includes checking planned deliverables against actual deliverables, and ensuring that all defects detected in the software product have been appropriately addressed. During test closure, you must finalize and archive objects that were produced in various stages of the testing process for later reuse. Also, you must hand over objects that were produced in the testing process to the organization or team responsible for the maintenance of the software product. Test closure also includes evaluating the testing process, and analyzing lessons learned for future releases of the same software product or for other projects.

Activity 2-5

Discussing the Test Process
Scenario:
Before performing various testing activities, you may want to check your understanding on the order in which testing activities are carried out.

1.

Which is a major task of test implementation and execution?

a)
Set up the test environment, and ensure that it is implemented correctly.
b)
Design tests to check the software product for the potential risks that it may carry, or for other aspects which are of particular interest.
c)
Compare the actual results with the expected results; and analyze the detected, fixed, re-tested, and confirmed or unresolved defects.
d)
Determine if more tests need to be executed or created, or if the expected results need to be lowered to address business and project risks.
2.

Identify the correct sequence of the phases of the testing process.
a)
Analysis and design, Test closure activities, Evaluating exit criteria and reporting, Planning and control, Implementation and execution

b)
Planning and control, Analysis and design, Implementation and execution, Evaluating exit criteria and reporting, Test closure activities
c)
Planning and control, Analysis and design, Implementation and execution, Test closure activities, Evaluating exit criteria and reporting
d)
Analysis and design, Planning and control, Implementation and execution, Evaluating exit criteria and reporting, Test closure activities
3.

Identify a major task of test planning.

a)
Scheduling test analysis and design tasks.
b)
Initiating corrective actions.
c)
Monitoring progress and test coverage.
d)
Measuring and analyzing results.
4.

In any software development process, at which point should the test process start ideally?
a)
After the coding phase is complete.
b)
After the design phase is complete.

c)
After the software requirements are approved.
d)
After the first component is ready for testing.
5.

Testing is divided into distinct phases because:
a)
More phases mean better testing.
b)
It is easier to manage testing in phases.

c)
Each test phase has a different purpose.
d)
Different tests can be run in different environments.
Topic E

Identify Test Documents

You learned about the fundamental test process. Almost all phases of the test process use and/or generate several documents. In this topic, you will identify various documents that are used and/or created in different phases of the test process.

Documentation plays a vital role in the test process. Comprehensive and well thought-out documents enable the internal project team, the organization, and other external authorities to monitor and assess the testing process, when required. In addition, documentation provides a basis for process improvement. Familiarity with various test documents enables you to identify the stages in the test process in which these documents are created, used, and maintained. In addition, an understanding of the contents of various test documents enables you to create these documents, whenever required.

Test Policies
Definition:
A test policy is a high-level document describing the principles, approach, and objectives of an organization regarding testing. The statements in a test policy reflect, integrate, and support the achievement of testing goals, which are typically directed to increasing software quality. Test policies for an organization provide a high-level guidance for testing, such as how testing will be performed, how its effectiveness will be evaluated, and how resources and responsibilities will be allocated. As a test policy provides the vision and framework for decision making, it is formally documented and made available to all stakeholders. It is formulated by a team consisting of upper management, executive personnel, and technical staff.

Example:
The test policy for an organization may contain statements such as delivering software of the highest quality is the goal of our company; a set of testing standards must be available to all interested parties on the intra-organizational website; testing must be carried out by an independent testing group because testing requires special training and an impartial view of the software; and so on.

Test Strategies
Definition:
A test strategy is a high-level description of test activities to be performed for an organization or a set of projects. It defines the testing objectives of a project, and ways to achieve those objectives. The test strategy, determined in the test planning and control phase of the testing process, defines which test techniques will be implemented in a project. The test strategy to be followed for a project determines testing effort and costs. Therefore, selecting an appropriate test strategy is considered an important test planning task. To select a suitable test strategy, test managers aim at optimizing the relation between costs of testing and defects.

[image: image14]
If the test strategy and policy for an organization are already defined, they should drive the test planning. However, in case the test strategy and policy are not available, you should ask for them before starting the test planning and control phase.

Example:
The test policy of an organization lays down rules for testing, for example, design documents will always be reviewed. On the other hand, a test strategy specifies the high-level approach toward testing, for example, system testing will be performed by an independent testing team, and this team will report in to the project quality manager.
Test Plans
Definition:
A test plan is a document that describes the scope, effort estimates, approach, resources, and schedule of testing activities to be performed. You can either create only one test plan describing test planning for the complete test process, or create separate test plans for each category of testing activities to keep track of the testing process. Typically, a test plan contains features to be tested, tasks to be performed, responsibilities of members of the testing team, the environment in which testing is to be done, test design techniques, entry and exit criteria to be used, the reason for selecting specific test strategies and techniques, and risks that require contingency planning. A test plan does not define how testing will be performed; it only describes what testing activities to perform.

If required, you can create a high-level test plan for a complex software system to describe the overall requirements, and then define a separate test plan for each subsystem and component. Creating a test plan in the early stages of a project life cycle enables you to deal with risks involved in the testing process by modifying the test strategy, resource allocation, responsibilities, and priorities.

Example:

Test Plans
Definition:
A test plan is a document that describes the scope, approach, resources, and schedule of testing activities to be performed. You can either create only one test plan describing test planning for the complete test process, or create separate test plans for each category of testing activities to keep track of the testing process. Typically, a test plan contains features to be tested, tasks to be performed, responsibilities of members of the testing team, the environment in which testing is to be done, test design techniques, entry and exit criteria to be used, the reason for selecting specific test strategies and techniques, and risks that require contingency planning. A test plan does not define how testing will be performed; it only describes what testing activities to perform.

If required, you can create a high-level test plan for a complex software system to describe the overall requirements, and then define a separate test plan for each subsystem and component. Creating a test plan in the early stages of a project life cycle enables you to deal with risks involved in the testing process by modifying the test strategy, resource allocation, responsibilities, and priorities.

Example:
Test Cases
Definition:
A test case is a set of input values, preconditions for execution, expected results, and postconditions for execution, all of which are developed for a particular test objective or test condition. Test cases enable you to exercise specific program paths or verify compliance with specific requirements. Organizations may include additional information in test cases to increase reusability, or to provide detailed information to testers and developers. Typically, software developers, testers, and software quality assurance staff are involved in designing test cases.

Example:
To test the an existing employee condition, the test case input value will be the actual name of an employee whose record already exists in the employee database.

Test Procedures
Definition:
A test procedure, also referred to as a test script, is a document specifying actions to take for executing a set of tests, and the sequence of those actions. For tests that are proposed to be executed manually and do not use a test execution tool, this document is called a manual test script. If required, you can also include instructions to be followed for executing tests using a test execution tool. In addition, you can choose to write an automated test procedure, referred to as an automation script, which is written in a programming language that can be interpreted by a test execution tool.

Example:
A test that may create an employee record, another test that modifies an existing record, and yet another test that deletes an employee record, need to run in the correct sequence; otherwise these tests will not function as expected. You, therefore, need to create a test procedure for specifying the sequence of these tests.

Release Notes
Definition:
A release note is a document that specifies items to be tested, their configuration, current status, and other information and is delivered by the software development team to the testing team and to other stakeholders at the onset of the test execution phase. The objective of creating a release note document is to enable stakeholders to locate and track items that are submitted for testing. A release note document contains information about the version number of the item to be tested, location of the item, developer of the item, references to documentation related to the item and corresponding test plan, current status of the item, and approval from those responsible for the item.

Example:
A tester is ready to execute tests for an item according to the schedule specified in the test plan. To do this, he should have knowledge about the location and current status of the item. This information is available to the tester in the release notes.

Incident Reports
Definition:
An incident report is a document that records the description of each event that occurs during the testing process and that requires further investigation. It consists of relevant details about the incident, such as the actual results, expected results, date and time of the occurrence of the incident, and any supporting evidence that will aid in resolving the incident. In addition, an incident report describes the actual or potential impact of the incident.

You can use an incident report to generate detailed information about the behavior of and any defects in a software application. This information can then be used to track the quality of the software product, and to take corrective measures for fixing the incident. The report also enables you to analyze the trends in aggregate defect data so that you can identify a set of problems or tests, and report the overall level of system quality. Finally, you can analyze the information in an incident report and use it in other projects to improve the test process.

Example:

Incident Reports
Definition:
An incident report is a document that records the description of each event that occurs during the testing process and that requires further investigation. It consists of relevant details about the incident, such as the actual results, expected results, date and time of the occurrence of the incident, and any supporting evidence that will aid in resolving the incident. In addition, an incident report describes the actual or potential impact of the incident.

You can use an incident report to generate detailed information about the behavior of and any defects in a software application. This information can then be used to track the quality of the software product, and to take corrective measures for fixing the incident. The report also enables you to analyze the trends in aggregate defect data so that you can identify a set of problems or tests, and report the overall level of system quality. Finally, you can analyze the information in an incident report and use it in other projects to improve the test process.

Example:
Test Summary Reports
Definition:
A test summary report is a synopsis of activities performed during the testing phase, and the results of those activities. It provides the overall testing status of the software product across various types of testing. A typical test summary report includes parameters such as the number of modules tested, number of test cases passed or failed, and number of defects detected. Mostly, a person who executes tests after the actual execution of test cases, which show discrepancies between actual and expected results, prepares this report. The test summary report enables you to evaluate the effectiveness of testing effort and the quality of a software product. In addition, it enables you to estimate and decide if any corrections or changes are needed before releasing the software product to the customer or end users. A test summary report also serves as a reference for lessons learned that can be applied to future projects.

Example:

Test Summary Reports
Definition:
A test summary report is a synopsis of activities performed during the testing phase, and the results of those activities. It provides the overall testing status of the software product across various types of testing. A typical test summary report includes parameters such as the number of modules tested, number of test cases passed or failed, and number of defects detected. Mostly, a person who executes tests after the actual execution of test cases, which show discrepancies between actual and expected results, prepares this report.

The test summary report enables you to evaluate the effectiveness of testing effort and the quality of a software product. In addition, it enables you to estimate and decide if any corrections or changes are needed before releasing the software product to the customer or end users. A test summary report also serves as a reference for lessons learned that can be applied to future projects.

Example:
Activity 2-6

Identifying Test Documents
Scenario:
Before you create and use documents in various phases of the testing process, you may want to check your understanding on the test documents.

1.

An incident report is a:
a)
Collection of independent, reusable test cases.

b)
Document that contains a description of the events that occur during the testing process and requires further investigation.
c)
Document that details the strategic approach to testing effort.
d)
Synopsis of the activities performed during the testing phase, and the results of those activities.
2.

What are the objectives of writing effective incident reports?
a)
To illustrate how to fix the incident.
b)
To explain how to reproduce the incident.


c)
To describe the actual or potential impact of the incident.

d)
To record evidence that will aid in resolving the incident.
3.

Which items are components of a test case that covers certain test conditions?
a)
A set of requirements


b)
A set of input values

c)
Expected results
d)
Actual results
4.

Which test document describes the scope, approach, resources, and schedule of testing activities?
a)
Test policy
b)
Test strategy

c)
Test plan
d)
Test case
e)
Test procedure
Topic F

Understand the Responsibilities of the Testing Team

After gaining an understanding of various test documents and the phases of the test process in which they are used or created, you may want to know about the responsibilities of people who perform different tasks related to testing. In this topic, you will learn about the responsibilities of the testing team.

The test process involves several tasks that require specific skills and outlook. A clear understanding of the different roles in a testing team and the responsibilities of each role facilitates proper task allocation. A poor allocation of tasks and responsibilities may lead to problems in which individual goals conflict with project goals. In addition, an understanding of the responsibilities of the testing team enables the entire team to identify the expectations from their role, which in turn, enables them to carry out their responsibilities effectively.

The Outlook to Testing
The mindset with which we test and review software products is different from the mindset with which we develop or analyze products. When we create a software product, we work positively to solve any problems in the design and to meet customer requirements. However, when we test a software product, we tend to be critical and look for defects in the product. This does not mean that a tester cannot be a developer, or vice versa. In reality, developers are testers; they test the discrete software components and integrated systems they create before releasing them to the testing team. When testing with the right mindset, developers are able to test their own code to locate and fix many defects before anyone else sees the code.

The Psychology of Testing
Apart from achieving independence, the role of a tester is independent from that of a developer to help focus effort and to gain from the expertise of trained and professional testing resources.

Organizations, projects, and people have their own goals and objectives. Different stakeholders have different viewpoints about quality and have their own objectives. At times, people may get influenced by the viewpoints and objectives of others. For example, based on the objective with which a tester is working, his focus may be either on finding defects or on confirming that the software product works. Therefore, to avoid such differences in viewpoints of developers, testers, and other stakeholders, it is important to clearly state testing objectives.

Discovering defects during testing may be perceived as personal criticism against the product and the author. Therefore, testing is often considered a destructive activity. To avoid this, testers need to report failures and defects very objectively and politely.

Methods to Communicate Defects
If you communicate defects and failures in a constructive way, you can avoid bad feelings between you and developers. Good interpersonal skills enable you to communicate information about defects, risks, and testing progress in a positive way. When reviewing and testing software products, you need to be careful about the following:

· Communicate the defects in a neutral, honest, and fact-focused way, without criticizing or blaming the person who created it. For example, you can write objective and factual incident reports and review findings.

· Explain that since a risk is discovered, both you and the developer can work round it or fix it so that a better-quality software product is delivered to the customer or end users.

· Start with collaboration rather than clashes, and remind everyone about the common goal of delivering better quality products to customers and end users.

· Ensure that the other person has understood what you have said and vice versa.

Methods to Communicate Defects
If you communicate defects and failures in a constructive way, you can avoid bad feelings between you and developers. Good interpersonal skills enable you to communicate information about defects, risks, and testing progress in a positive way. When reviewing and testing software products, you need to communicate the defects in a neutral, honest, and fact-focused way, without criticizing or blaming the person who created it. For example, you can write objective and factual incident reports and review findings.

You can explain that since a risk is discovered, both you and the developer can work around it or fix it so that a better-quality software product is delivered to the customer or end users. You can also start with collaboration rather than clashes, and remind everyone about the common goal of delivering better quality products to customers and end users. Finally, you must ensure that the other person has understood what you have said and vice versa.

Independence of Testing
Independence of testing refers to demarcation of testing responsibilities, which encourages the accomplishment of objective testing. Because it is difficult to find mistakes in their own code, developers rely on others to help them with testing. In fact, testing may involve several people, each carrying out different types of tests. Such a setup leads to an independent test of the software product.

Throughout the development life cycle of a software product, it goes through multiple stages of testing and reviews; these tests and reviews may be carried out independently. For example, to detect defects before the onset of the coding phase and to build the right software, the requirements specification document and designs may be reviewed by someone other than the author. And, after coding is complete, the software product can be tested independently. This extent of independence of testing is quite effective as it prevents author bias. Independent testing can be carried out at any stage in the development process.

However, independence is not a replacement for familiarity. Developers who can efficiently find many defects in their own code facilitate early testing and early defect detection, which is cost effective.

Levels of Test Independence
Independence in testing can be achieved at various levels. Following are the levels of test independence listed in the order of lowest to highest:

· Tests designed by the person who wrote the item being tested.

· Tests designed by another person, such as another developer, from the same team as the person who wrote the item being tested.

· Tests designed by a person from a different organizational group, such as an independent testing team, or test specialists, such as performance test specialists.

· Tests designed by a person from a different organization, such as an organization to which testing has been outsourced or certification by an external body.

The level of independence that you select for a project depends on the risks associated with the software product. For large, complex, or safety-critical projects, it is advisable to have multiple levels of independent testing, where software developers participate in testing at the lower levels because at times, their lack of objectivity may limit their testing effectiveness. Independent testers may define the processes and rules for testing, in consultation with upper management.

Benefits and Limitations of Independent Testing
The benefits of independent testing are:

· Independent testers often see more defects, which are different from the defects pointed out by developers or testers working within a software development team.

· Independent testers bring their own set of assumptions to testing and reviews that are different from the assumptions that people made during product specification and implementation; these assumptions often reveal hidden defects and errors.

The limitations of independent testing are:

· Independent testers and the development team tend to work in isolation. The isolation may happen in terms of interpersonal behavior, or in the form of differences in views related to quality and business objectives.

· Independent testers may become a bottleneck as the last checkpoint.

· With the presence of independent testers, software developers may lose the sense of ownership and responsibility for quality.

Levels of Test Independence
Independence in testing can be achieved at various levels. The first level corresponds to tests designed by the person who wrote the item being tested. The second level corresponds to tests designed by another person, such as another developer, from the same team as the person who wrote the item being tested. The third level corresponds to tests designed by a person from a different organizational group, such as an independent testing team, or test specialists, such as performance test specialists. Finally, the fourth level corresponds to tests designed by a person from a different organization, such as an organization to which testing has been outsourced, or to certification by an external body.

The level of independence that you select for a project depends on the risks associated with the software product. For large, complex, or safety-critical projects, it is advisable to have multiple levels of independent testing, where software developers participate in testing at the lower levels because at times, their lack of objectivity may limit their testing effectiveness. Independent testers may define the processes and rules for testing, in consultation with upper management.

Benefits and Limitations of Independent Testing
The benefits of independent testing are:

· Independent testers often see more defects, which are different from the defects pointed out by developers or testers working within a software development team.

· Independent testers bring their own set of assumptions to testing and reviews that are different from the assumptions that people made during product specification and implementation; these assumptions often reveal hidden defects and errors.

The limitations of independent testing are:

· Independent testers and the development team tend to work in isolation. The isolation may happen in terms of interpersonal behavior, or in the form of differences in views related to quality and business objectives.

· Independent testers may become a bottleneck as the last checkpoint.

· With the presence of independent testers, software developers may lose the sense of ownership and responsibility for quality.

Responsibilities of Testers
A tester is a skilled professional who is involved in the testing of a software component or system. Testers are experts in executing tests and incident reporting.

The typical responsibilities of a tester include:

· Review test plans and provide inputs.

· Analyze, review, and assess requirements and design specifications.

· Identify test conditions.

· Create test designs, test cases, and test procedures.

· Automate tests, with support from developers or test automation experts.

· Set up the test environment, with assistance from system administrators and network management staff.

· Prepare and acquire test data.

· Implement tests in the test environment, log test proceedings, evaluate results, and document deviations from expected results.

· Monitor testing and the test environment.

· Measure performance of components and systems, if required.

· Review tests developed by other testers.

Responsibilities of Testers
A tester is a skilled professional who is involved in the testing of a software component or system. Testers are experts in executing tests and incident reporting. The typical responsibilities of a tester include reviewing test plans and providing inputs. They analyze, review, and assess requirements and design specifications, and identify test conditions.

Testers are also responsible for creating test designs, test cases, and test procedures. They automate tests, with support from developers or test automation experts. They also set up the test environment, with assistance from system administrators and network management staff. Testers prepare and acquire test data. They implement tests in the test environment, log test proceedings, evaluate results, and document deviations from expected results. They also monitor testing and the test environment. Testers measure performance of components and systems, if required. They also review tests developed by other testers.

Responsibilities of Test Leaders
A test leader, also called a test manager or test coordinator, is a person responsible for managing testing activities and resources, and evaluating test objects. Test leaders are individuals who direct, control, administer, plan, and regulate the evaluation of test objects.

The typical responsibilities of a test leader include:

· Review the test policy of the organization.

· Devise the test strategy and plan, in collaboration with project managers and other stakeholders.

· Understand the context, test objectives, and risks of the project.

· Plan tests, including selecting test approaches, estimating the time, effort and cost of testing, acquiring resources, defining test levels, cycles, and planning incident management.

· Initiate the specification, preparation, implementation, and execution of tests.

· Monitor test results and adapt planning based on test results and progress.

· Set up proper configuration management of items produced during testing for traceability.

· Decide on the implementation of the test environment and ensure that it is set up before test execution.

· Introduce appropriate metrics for measuring test progress and evaluating the quality of the testing and of the product.

· Schedule tests and then monitor, measure, control, and report test progress.

· Select tools to support testing and organize training required to use those tools.

· Write test summary reports based on the information gathered during testing.

Responsibilities of Test Leaders
A test leader, also called a test manager or test coordinator, is a person responsible for managing testing activities and resources, and evaluating test objects. Test leaders are individuals who direct, control, administer, plan, and regulate the evaluation of test objects.

The typical responsibilities of a test leader include reviewing the test policy of the organization. They devise the test strategy and plan, in collaboration with project managers and other stakeholders. Test leaders understand the context, test objectives, and risks of the project. They plan tests, including selecting test approaches, estimating the time, effort and cost of testing, acquiring resources, defining test levels, cycles, and planning incident management. Test leaders are also involved in initiating the specification, preparation, implementation, and execution of tests.

Test leaders also monitor test results and adapt planning based on test results and progress. They are also responsible for setting up proper configuration management of items produced during testing for traceability. Test leaders decide on the implementation of the test environment and ensure that it is set up before test execution. They introduce appropriate metrics for measuring test progress and evaluating the quality of the testing and of the product. They also schedule tests and then monitor, measure, control, and report test progress. Test leaders select tools to support testing and organize training required to use those tools. They are also involved in writing test summary reports based on the information gathered during testing.

Activity 2-7

Discussing the Responsibilities of the Testing Team
Scenario:
Before you carry out your responsibilities as a tester or test leader, you may want to check your understanding on the responsibilities of various roles in a testing team.

1.

True or False? Product reliability suffers if testing is done by a fully independent test agency.
a)
True

b)
False
2.

A good tester is:
a)
The one who finds the maximum defects.
b)
The one who embarrasses most developers.

c)
The one who gets the most defects fixed.
3.

At times, testers fail to identify failures in a software product because they do not read the __________ carefully.
a)
Input
b)
Output

c)
Test conditions
4.

Which method works the best to promote and maintain good relationships between developers and testers?
a)
Understanding what developers and testers say.
b)
Reminding people about better software quality.
c)
Understanding the developer's perspective about testing.

d)
Communicating defects in a neutral, honest, and fact-focused way.
5.

What is the benefit of independent testing?

a)
It is more effective at finding defects.
b)
It follows specific processes and methodologies.
c)
It is not concerned with the success or failure of a project.
d)
It is usually cheaper than developers testing their own work.
6.

Identify the task typically performed by a test leader.
a)
Review tests developed by testers.
b)
Create test designs, test cases, and test procedures.
c)
Automate tests, with support from developers or test automation experts.

d)
Write test summary reports based on the information gathered during testing.
7.

A test leader is:
a)
A person managing a group of testers.
b)
A person who gets paid more than a tester.
c)
A person who reports on testing progress to senior management.

d)
A person responsible for managing testing activities and resources.
8.

Identify the reason why developers face difficulty in testing their own work efficiently.
a)
Lack of training

b)
Lack of objectivity
c)
Lack of technical documentation
d)
Lack of test tools for developers
Lesson 2 Follow-up
In this lesson, you familiarized yourself with testing. Gaining familiarity with testing and the process it follows enables you to control the quality of software before releasing it to a customer or into the market.

1.

Did you find any differences in the testing process covered in this lesson and the one followed in your organization? What are the differences?

Answers will vary, but may include:

The testing process is essentially the same, only the terminology used is different.

The testing process is tweaked for different projects, that is, all testing projects do not go through all the stages specified in this lesson.

2.

Do you think that documentation is an important aspect of testing? How?

Answers will vary, but may include:

Yes, documentation is a very important aspect of testing. It enables:

* Comparing customer and end-user requirements with the features and functionalities of the actual system.

* Developing test cases, and other test documents.

Lesson 3
Understanding Test Levels
Lesson Objectives:

In this lesson, you will explain test levels.

You will:

· Explain component testing.

· Explain integration testing.

· Explain system testing.

· Explain acceptance testing.

Introduction

You familiarized yourself with testing and the process it follows. In the first phase of the test process, projects identify the levels at which tests need to be performed in order to plan and control the project better. In this lesson, you will develop an understanding of various test levels.

Based on the phases of the software development life cycle model, you can group various test activities together for better test organization and management. An understanding of each test level enables you to clearly define the various test levels. It also enables you to identify the parts of a software product that may otherwise have been missed or tested repeatedly. For some high-risk projects, we purposely introduce repetitions in testing activities; therefore, an awareness of whether to introduce repetitions and where to introduce them enables you to plan more effective and efficient testing.

Topic A

Understand Component Testing

The test level that is typically implemented first in a software development life cycle model includes activities related to detecting defects in and verifying the functionality of discrete software components. In this topic, you will learn about component testing.

As a software product progresses through various stages in the development process, small components are developed first. Because these components are small and simple, it is easier to design, execute, and analyze tests for them. Moreover, if defects are detected after the component development stage, it is easier and less expensive to locate and fix them because only individual components are under consideration. Component testing enables you and the developers to gain confidence that individual components of source code are working in the most efficient and error-free manner possible. In addition, component testing encourages software developers to enhance source code, without worrying about the consequences of those changes on other components or on the software product as a whole.

Test Levels
Definition:
Test levels are groups of testing activities that are organized and managed together in a project. Software testing is typically carried out at different levels in the software development process; for example, testing individual software components; then testing integrated component groups; followed by testing the entire software system; and finally, some types of acceptance tests. Testing is performed at four levels:

· Component testing

· Integration testing

· System testing

· Acceptance testing

Each test level has specific objectives. Objectives include detecting functional and structural defects in components during component testing; examining interactions between components during integration testing; and evaluating characteristics such as usability, reliability, and performance during system testing.

Example:

Test Levels
Definition:
Test levels are groups of testing activities that are organized and managed together in a project. Testing is performed at different levels in the software development process. It includes component testing, integration testing, system testing, and acceptance testing. Each test level has specific objectives. Objectives include detecting functional and structural defects in components during component testing; examining interactions among components during integration testing; and evaluating characteristics such as usability, reliability, and performance during system testing.

Example:
Component Testing
Definition:
Component testing, also referred to as module, program, or unit testing, is the testing of individual software components created in the coding phase of the development life cycle.

The most important aspect of component testing is that software components are tested independent of all other system components. Testing components individually not only helps prevent any external impact on the components but also serves as an indication that the errors have originated nowhere but from the tested component.

Because component testing is performed at the lowest test level, there is much greater collaboration among the development team.

Example:
Consider the given code that calculates simple interest in an interest calculator application. The applicable rate of interest, as specified in the requirements specification document for this component, is:

· If the principal is less than or equal to 10,000, the rate of interest is 10 percent.

· If the principal is less than or equal to 100,000, the rate of interest is 5 percent.

· If the principal is greater than 100,000, the rate of interest is 3 percent.

The function that calculates the simple interest is:
double calc_interest (double p, int t)

{

double si;

if (p<=10000)

si=(p*10*t)/100;

else if(p>10000 && p<=100000)

si=(p*5*t)/100;

else if(p>100000)

si=(p*3*t)/100;

return si;

}

To test the simple interest component, the developer or tester calls the calc_interest function by passing the valid and invalid input values mentioned in various test cases. The correctness of the component is verified by comparing the results with the expected results mentioned in the test cases.

Components
A component is the smallest software item that can be tested in isolation. Components are referred to as modules, units, programs, or functions, based on the programming language used by software developers; in object-oriented programming, components are called classes.

Component Testing
Definition:
Component testing is the testing of individual software components created in the coding phase of the development life cycle. The most important aspect of component testing is that software components are tested independent of all other system components. Testing components individually not only helps prevent any external impact on the components but also serves as an indication that the errors have originated nowhere but from the tested component. Because component testing is performed at the lowest test level, there is much greater collaboration among the development team.

Example:
Given the software component that calculates simple interest at various rates of interest depending on the principal amount, the developer or tester calls the calc_interest function by passing valid and invalid input values mentioned in various test cases. The correctness of the component is verified by comparing the actual results with the expected results mentioned in the test cases.

Components
A component is the smallest software item that can be tested in isolation. Components are referred to as modules, units, programs, or functions, based on the programming language used by software developers; in object-oriented programming, components are called classes.

Objectives of Component Testing
When performing component testing, you need to follow specific test objectives. These objectives aim at testing the specific functionality and nonfunctional characteristics of components. Component testing objectives are critical to determining the quality of a component, as components cannot be tested at higher test levels. Fixing component-level defects at higher test levels is quite expensive. The given table lists the objectives of component testing and their respective descriptions.

Test Objective

Description

Test functionality

Tested components need to function correctly and completely, as specified in the requirements. To achieve this objective, components are tested using sets of input/output values that help check the input/output behavior of the components. Typical defects detected during functional component testing are missing or incorrectly selected program paths and wrong calculations.

Test robustness

When tested components are integrated together later in the software development life cycle, they should collaborate and interact with other components. In case a component is not called/used correctly, it should not adversely affect the functioning or performance of the entire system; instead, the component should be robust enough to handle the error situation reasonably.

Test efficiency

Tested components should efficiently use computer resources, such as memory, computing time, and network access time. The efficiency of a component is calculated by measuring the appropriate criteria, such as response time in milliseconds and memory usage in kilobytes. Efficiency tests are typically performed only on efficiency-critical components of a system or when efficiency requirements are stated in specifications.

Test maintainability

Tested components should be easy to modify and to develop further. The components should allow developers to easily continue development after months or years. The characteristics of components that support maintainability are code structure, modularity, quality of comments in code, adherence to standards, and understandability.

Objectives of Component Testing
When performing component testing, you need to follow specific test objectives. These objectives aim at testing the specific functionality and nonfunctional characteristics of components.

Test Objective

Description

Test functionality

Tested components need to function correctly and completely, as specified in the requirements. To achieve this objective, components are tested using sets of input/output values that help check the input/output behavior of the components. Typical defects detected during functional component testing are missing or incorrectly selected program paths and wrong calculations.

Test robustness

When tested components are integrated together later in the software development life cycle, they should collaborate and interact with other components. In case a component is not called/used correctly, it should not adversely affect the functioning or performance of the entire system; instead, the component should be robust enough to handle the error situation reasonably.

Test efficiency

Tested components should efficiently use computer resources, such as memory, computing time, and network access time. The efficiency of a component is calculated by measuring the appropriate criteria, such as response time in milliseconds and memory usage in kilobytes. Efficiency tests are typically performed only on efficiency-critical components of a system or when efficiency requirements are stated in specifications.

Test maintainability

Tested components should be easy to modify and to develop further. The components should allow developers to easily continue development after months or years. The characteristics of components that support maintainability are code structure, modularity, quality of comments in code, adherence to standards, and understandability.

Component Testing Tasks
The tasks involved in planning for and executing component tests include:

· Planning the general approach to component testing. This includes creating a generic test plan with inputs from the requirements specification and design documents. The test plan details the component testing approach and risks, features of each component to be tested, and information related to resources and scheduling.

· Designing test cases and test procedures. This includes specifying the input data and expected output for each test case, and detailed steps required to run the tests.

· Identifying the relationships between test cases and binding related test cases together in test suites. Test cases, test procedures, and test suites from past projects can also be reused, if available.

· Designing the supporting code necessary for running component tests. This is required to execute discrete components as stand-alone modules/units/programs/functions are tested, and not the complete system.

· Running tests and carefully recording, reviewing, and checking the test results. This includes determining whether components have passed or failed tests. In case a test fails, a description of the problem, and the differences between the expected behavior and actual behavior are recorded. Decisions regarding whether or not to perform additional testing are also made.

Component Testing Tasks
Before you start component testing, you must create a generic test plan specifying the general approach to component testing based on the requirements specification and design documents. You must then design test cases and specify the input data and expected output for each test case, and document the steps required to run the tests. You may also design supporting code necessary to run component tests on standalone modules, units, and programs or functions of a system. You must also carefully execute the tests and document the results of the tests. In case a test fails, you must record a description of the problem, and the differences between the expected behavior and actual behavior of the component so that you can solve the problem.

Stubs
Definition:
A stub is a special-purpose software component, which is used to test another component that calls or is dependent on the stub. It replaces a component that is called from the component under test. Component testing may be performed in isolation from the rest of the system, and a component under test may call different parts of software. These parts may or may not have been implemented during testing, and therefore may not be ready to use. Stubs replace the missing parts of software, and simulate the interface between them and the component under test. They do this by simulating the input/output behavior of the missing software parts that are called by the component under test.

Figure 3-1: The working of stubs.

Example:
A stub can be created at different levels of complexity. For example, a stub can:

1. Display a message that it has been called by a component.

2. Perform 1, and then display any input values passed from the component to the stub.

3. Perform 1 and 2, and then pass back a result computed using the input values.

4. Perform 1, 2, and 3, and then display the computed result.

Stubs
Definition:
A stub is a special-purpose software component, which is used to test another component that calls or is dependent on the stub. It replaces a component that is called from the component under test. Component testing may be performed in isolation from the rest of the system, and a component under test may call different parts of software. These parts may or may not have been implemented during testing, and therefore may not be ready to use. Stubs replace the missing parts of software by simulating the input/output behavior of the missing parts that are called by the component under test.

Example:
Creating Stubs
A stub can be created at different levels of complexity. For example, a stub can:

1. Display a message that it has been called by a component.

2. Perform 1, and then display any input values passed from the component to the stub.

3. Perform 1 and 2, and then pass back a result computed using the input values.

4. Perform 1, 2, and 3, and then display the computed result.

Drivers
Definition:
A driver is a special-purpose software component that is used to replace a component that calls another component. It calls the component to be tested and then receives the response of the called component. Similar to a stub, a driver also replaces the missing software and simulates the interface between software components in a simple manner.

Figure 3-2: The working of a driver.

To write stubs and test drivers, you need to have knowledge about the component under test, including the programming language in which the component is scripted. To correctly script the code to call a component under test, the program code of the component should be available to you and you should be able to understand it. This is the reason for component testing being performed with the support of software developers. At times, based on the level of risks involved, component testing may be carried out by developers themselves, thereby introducing test independence. And in such a case, defects are typically fixed as soon as they are detected, without formally being recorded.

Example:
Similar to a stub, a driver can also be created at different levels of complexity. For example, a driver can:

1. Call a component.

2. Perform 1, and then pass input values to the component.

3. Perform 1 and 2, and then display the input values passed to the component.

4. Perform 1, 2, and 3, and then display the results passed back by the component.

Drivers
Definition:
A driver is a special-purpose software component that is used to replace a component that calls another component. It calls the component to be tested and then receives the response from the called component. Similar to a stub, a driver also replaces missing software and simulates the interface among software components.

Example:
Understanding Drivers
To write stubs and test drivers, you need to have knowledge about the component under test, including the programming language in which the component is scripted. To correctly script the code to call a component under test, the program code of the component should be available to you and you should be able to understand it. This is the reason for component testing being performed with the support of software developers. At times, based on the level of risks involved, component testing may be carried out by developers themselves, thereby introducing test independence. And in such a case, defects are typically fixed as soon as they are detected, without formally being recorded. Similar to a stub, a driver can also be created at different levels of complexity. For example, a driver can:

1. Call a component.

2. Perform 1, and then pass input values to the component.

3. Perform 1 and 2, and then display the input values passed to the component.

4. Perform 1, 2, and 3, and then display the results passed back by the component.

Test-Driven Development
Definition:
Test-driven development, also known as the test-first approach, is a software development method, in which test cases are developed and often automated before software components are developed to run those test cases. Typically used in Extreme Programming, this approach is extremely iterative because it involves repeated cycles of developing test cases, creating and integrating small components, and executing tests until the components pass the tests.

Example:

Activity 3-2

Discussing Component Testing
Scenario:
Before you perform the activities related to detecting defects in and verifying the functionality of discrete software components, you may want to check your understanding on the first level of testing.

1.

True or False? During component testing, testers focus on bugs in the constituent pieces of the complete system.

a)
True
b)
False
2.

Which statement about component testing is false?
a)
It makes it easier to locate the cause of a defect.
b)
It enables testers to focus on each component individually, which leads to better testing.

c)
It enables developers to view internal limits in code that are completely invisible to testers.
d)
It enables you to conclude that errors, if any, are either in the component under test or in a stub/driver written to test it.
3.

Which statement about a test driver is true?
a)
It is a software item that is an object of testing.

b)
It is a software component, which is used to replace a component that calls another component.
c)
It is a document that specifies all events that happen during the testing process that requires investigation.
d)
It is a document that specifies the items to be tested, and includes information about the current status and location of objects.
4.

True or False? To test a component, typically testers write a stub, which calls the component to be tested and then receives the response of the called component.
a)
True

b)
False
Topic B

Understand Integration Testing

You discovered the intricacies of component testing. The test level typically implemented next in a software development life cycle model includes activities related to detecting defects in the integrated software components and testing the components as a group. In this topic, you will learn about integration testing.

After the component testing phase is over and individual software components are integrated to form bigger units, integration testing enables you and software developers to validate the collaboration of all the components. Testing at this stage enables you to detect defects in the way components interface and interact with each other. Defects detected during integration testing are a little costlier to fix than the defects discovered in component testing; but it is far less expensive to fix the defects at this level, than fixing them later at the system testing level.

Integration Testing
Definition:
Integration testing is testing performed to detect defects in the interfaces between components, and in the interactions between the integrated components and systems, such as the operating system, file system, and hardware. After discrete software components are tested, they are assembled and then tested to confirm that all components collaborate as expected. As testing at the integration level takes place after component testing, this level assumes that individual components have already been tested and all detected defects fixed.

When integrating, single components are assembled gradually to create larger components. These large components or subsystems undergo integration tests at each step. Each subsystem created in this manner may further be integrated to form even larger subsystems. Such assembled subsystems may again go through integration tests later. Integration tests are also performed when existing systems are modified, extended, or connected to other systems.

Similar to component testing, integration testing also involves the use of test drivers. They pass input values to subsystems and receive results.

Integration testing is typically performed by integrators; however, it is preferred practice to get it done by a specialized integration tester or test team.

Example:

In the case of an interest calculator application, to access the principal amount, the calc_interest() component will have to communicate with check_principal(). The check_principal() component retrieves the principal amount from the database, and then calc_interest() calculates the simple interest accordingly, followed by displaying the data on the graphical user interface (GUI). As the calc_interest() component needs to communicate with the check_principal() component and the GUI, and the check_principal() component communicates with the database and calc_interest(), it is important that each of these be tested at the component level and also at the integration level. Some examples of defects that may be discovered at the integration testing level include:

· The database and the check_principal() component may not communicate properly.

· The database may display/store wrong values for principal if the process of updating the principal amount on the database after the calculation of simple interest is not properly synchronized.

· The calc_interest() component may require values in one currency format, and the check_principal() component may provide values in another currency format.

All of the defects listed above can only be detected at the integration level by testing the integrated subsystem using the test cases with all possible communications within the subsystem.

Integration
Integration is the process of combining components or systems into larger structural units or subsystems. Software developers, testers, or teams that specialize in this process typically perform integration.

Integration with COTS
Commercial off-the-shelf (COTS) software products are products that are developed for the general market, that is, for a large number of customers, and are delivered to many customers in the same format. At times, COTS software products are linked with existing systems, in which case, integration tests are performed on COTS software products to examine their collaboration with other components and subsystems.

Integration Testing
Definition:
Integration testing is testing performed to detect defects in interfaces between components. It also involves testing interactions between integrated components and systems, such as the operating system, file system, and hardware. After discrete software components are tested, they are assembled and then tested to confirm that all components collaborate as expected. As testing at the integration level takes place after component testing, this level assumes that individual components have already been tested and all detected defects are fixed.

When integrating individual components, they are assembled gradually to create larger components. These larger components or subsystems undergo integration tests at each step. Each subsystem created in this way may further be integrated to form even larger subsystems. Such assembled subsystems may again go through integration tests later. Integration tests are also performed when existing systems are modified, extended, or connected to other systems. Integration testing is typically performed by integrators; however, it is preferred practice to get it done by a specialized integration tester or test team.

Example:
Example of Integration Testing
In the case of an interest calculator application, to access the principal amount, the calc_interest() component will have to communicate with check_principal(). The check_principal() component retrieves the principal amount from the database, and then calc_interest() calculates the simple interest accordingly, followed by displaying the data on the graphical user interface (GUI). As the calc_interest() component needs to communicate with the check_principal() component and the GUI; and the check_principal() component communicates with the database and calc_interest(), it is important that each of these be tested at the component level and also at the integration level. Some examples of defects that may be discovered at the integration testing level include:

· The database and the check_principal() component may not communicate properly.

· The database may display/store wrong values for principal if the process of updating the principal amount on the database after the calculation of simple interest is not properly synchronized.

· The calc_interest() component may require values in one currency format, and the check_principal() component may provide values in another currency format.

All of the defects listed above can only be detected at the integration level by testing the integrated subsystem using the test cases with all possible communications within the subsystem.

Integration
Integration is the process of combining components or systems into larger structural units or subsystems. Software developers, testers, or teams that specialize in this process typically perform integration.

Integration with COTS
Commercial off-the-shelf (COTS) software products are products that are developed for the general market, that is, for a large number of customers, and are delivered to many customers in the same format. At times, COTS software products are linked with existing systems, in which case, integration tests are performed on COTS software products to examine their collaboration with other components and subsystems.

Integration Testing Objects
Based on the size of objects to be tested, integration testing is broadly divided into two categories, as described in the table.

Integration Testing Category

Description

Component integration testing

Component integration testing, also referred to as integration testing in the small, is testing performed to detect defects in the interfaces and interaction between integrated components.

System integration testing

System integration testing, also known as higher-level integration testing or integration testing in the large, is testing performed to detect defects in the interfaces and interaction between components, and external systems and packages, such as Electronic Data Interchange and Internet. When software components are integrated, their interfaces to external systems are also exposed to integration testing. As the software development team does not have any control over the interfaces of the external systems, which may change unexpectedly, these interfaces are considered a special risk. And, integration testing does not guarantee flawless interactions in the future between components and external systems.

Objectives of Integration Testing
When performing integration testing, you need to follow specific test objectives. These objectives test both functional and nonfunctional attributes, such as performance and interface capacity, of integrated components. The defects detected during integration testing cannot be detected during component testing because some failures occur only when two or more components interact with each other. The given table lists the objectives of integration testing and their respective descriptions.

Test Objective

Description

Test interface formats

Tested integrated components should not contain interface- or collaboration-related problems. The most typical defects detected during integration tests include incompatible interface formats of the integrated components because of missing files, or discrepancies in the design and in the way components are split during development.

Test data exchange

When assembled components exchange data or communicate with each other, they should not exhibit any faults. The most typical defects that arise in integration testing consist of components transmitting no data or syntactically incorrect data, components interpreting data incorrectly, or data transmission at the wrong time.

Objectives of Integration Testing
When performing integration testing, you need to follow specific test objectives to test both functional and nonfunctional attributes of integrated components.

Test Objective

Description

Test interface formats

Tested integrated components should not contain interface- or collaboration-related problems. The most typical defects detected during integration tests include incompatible interface formats of the integrated components because of missing files, or discrepancies in the design and in the way components are split during development.

Test data exchange

When assembled components exchange data or communicate with each other, they should not exhibit any faults. The most typical defects that arise in integration testing consist of components transmitting no data or syntactically incorrect data, components interpreting data incorrectly, or data transmission at the wrong time.

Integration Testing Benefits
Integration testing enables you to detect defects that cannot be detected during component testing because some failures occur only when two or more components interact with each other. Performing integration tests enables you to identify and rectify these defects to create a quality software product.

Importance of Component Testing
At times, some projects skip component tests and execute all test cases during integration testing. The drawbacks to following this approach are:

· Most failures in such situations originate from functional faults in individual components. This is because even if you perform specific tests on each component at this level, the environment does not support extensive component testing and makes it harder to access individual components.

· As you cannot access individual components properly, many failures cannot be triggered; therefore, several faults remain undetected.

· In case a test fails, it is difficult or impossible to trace the origin of the fault or to isolate its cause.

If projects try to save testing effort by omitting component tests, they end up identifying fewer defects and having more trouble in identifying the location of defects, which leads to even more effort. Therefore, to perform effective and efficient testing, a combination of component and integration tests should be used.

Importance of Component Testing
At times, some projects skip component tests and execute all test cases during integration testing. This approach may lead to failures caused by functional faults in individual components. This is so because even if you perform specific tests on each component at this level, the environment does not support extensive component testing and makes it harder to access individual components. Moreover, if a test fails during integration testing, it is difficult or impossible to trace the origin of a fault because the root cause of the fault may lie with individual components.

Effective Software Testing
If projects try to save testing effort by omitting component tests, they end up identifying fewer defects and having more trouble in identifying the location of defects, which leads to even more effort. Therefore, to perform effective and efficient testing, a combination of component and integration tests should be used.

Limitations to Integration
An integration strategy determines the approach using which discrete software components are integrated. An optimal integration strategy enables projects to achieve a balance between the cost and benefits of testing. To decide on the best integration strategy for a project, test leaders should perform the given tasks:

· Analyze the system architecture to determine how components depend on each other.

· Use the project plan to determine when in the development life cycle components will be ready for integration and testing.

· Use the test plan to determine the features of the subsystems to be tested and the intensity with which they are to be tested.

Limitations to Component Integration
An integration strategy determines the approach using which discrete software components are integrated. An optimal integration strategy enables projects to achieve a balance between the cost and benefits of testing. To decide on the best integration strategy for a project, test leaders analyze the system architecture to determine how components depend on each other. They use the project plan to determine when in the development life cycle components will be ready for integration and testing. They use the test plan to determine the features of subsystems to be tested and the intensity with which they are to be tested.

Integration Strategies
When creating an integration testing plan, a test leader can follow either the incremental or big-bang approach. Incremental testing is an integration approach in which components or subsystems are integrated and tested one or more at a time, until all components or subsystems are integrated and tested. On the other hand, big-bang testing is an integration approach in which components or subsystems are combined all at once into a subsystem, rather than in stages. Test leaders can follow the given generic integration strategies.

The following table provides a description of each integration strategy.

Integration Strategy

Description

Top-down integration
This is an incremental approach in which the component that exists at the top of the component hierarchy is tested first, with lower-level components being simulated by stubs. Then, the tested components are used as drivers to test lower-level components. This process is repeated until the components at the lowest level are tested.

Bottom-up integration
This is also an incremental approach with a difference that the components that exist at the lowest level in the component hierarchy are tested first, with higher-level components being simulated by test drivers. Then, the tested components are used to test higher-level components. This process is repeated until the component at the highest level in the component hierarchy is tested.

Functional incremental integration
This too is an incremental approach in which components or subsystems are combined and tested in the order in which basic functionalities start working.

Ad hoc integration
In this approach, components are integrated in the order in which they are developed. This approach includes the use of both stubs and test drivers.

Backbone integration
In this approach, a frame or backbone is created and components are progressively integrated into it.

The advantage of the big-bang approach is that all components are integrated before integration testing begins, and there is no need to use stubs or drivers to simulate the unfinished parts of the system. However, it typically involves time loss while waiting for the development and integration of all software components. In addition, as all of the defects are detected at the same time, it is difficult to locate and fix them. On the other hand, the incremental approach enables you to find defects early in smaller assemblies when it is comparatively easier to detect and fix the causes of defects. However, a disadvantage of incremental testing is that it too can be time consuming because it involves developing stubs and drivers. The best approach to integration is to begin with interfaces that are expected to cause the majority of problems. You should do this to prevent major defects at the end of the integration testing level. Therefore, incremental integration is preferred over big-bang integration because it reduces the risk of late defect detection.

Integration Strategies
When creating an integration testing plan, a test leader can follow either the incremental or big-bang approach. Incremental testing is an integration approach in which components or subsystems are integrated and tested one or more at a time, until all components or subsystems are integrated and tested. On the other hand, big-bang testing is an integration approach in which components or subsystems are combined all at once into a subsystem, rather than in stages. Test leaders can follow the given generic integration strategies.

You can implement different strategies when you integrate components of a software product.

Integration Strategy

Description

Top-down integration
This is an incremental approach in which the component that exists at the top of the component hierarchy is tested first, with lower-level components being simulated by stubs. Then, the tested components are used as drivers to test lower-level components. This process is repeated until the components at the lowest level are tested.

Bottom-up integration
This is also an incremental approach with a difference that the components that exist at the lowest level in the component hierarchy are tested first, with higher-level components being simulated by test drivers. Then, the tested components are used to test higher-level components. This process is repeated until the component at the highest level in the component hierarchy is tested.

Functional incremental integration
This is an incremental approach in which components or subsystems are combined and tested in the order in which basic functionalities start working.

Ad hoc integration
In this approach, components are integrated in the order in which they are developed. This approach includes the use of both stubs and test drivers.

Backbone integration
In this approach, a frame or backbone is created and components are progressively integrated into it.

Differences Between Incremental and Big-Bang Approach
The advantage of the big-bang approach is that all components are integrated before integration testing begins, and there is no need to use stubs or drivers to simulate the unfinished parts of the system. However, it typically involves time loss while waiting for the development and integration of all software components. In addition, as all of the defects are detected at the same time, it is difficult to locate and fix them. On the other hand, the incremental approach enables you to find defects early in smaller assemblies when it is comparatively easier to detect and fix the causes of defects. However, a disadvantage of incremental testing is that it too can be time consuming because it involves developing stubs and drivers. The best approach to integration is to begin with interfaces that are expected to cause the majority of problems. You should do this to prevent major defects at the end of the integration testing level. Therefore, incremental integration is preferred over big-bang integration because it reduces the risk of late defect detection.

Monitors
Definition:
A monitor is a tool or hardware device that runs in parallel to an assembled component under integration tests. It manages, records, and analyzes the behavior of the assembled component or subsystem. A monitor works by reading and logging data traffic between assembled components and/or external systems.

Various monitors for standard protocols, such as network protocols, are available on the market. On the other hand, to manage and observe project-specific components and subsystem interfaces, you need to develop and deploy special monitors.

Example:

Activity 3-3

Discussing Integration Testing
Scenario:
Before you perform the activities related to detecting defects in integrated software components and testing components as a group, you may want to check your understanding on the second level of testing.

1.

Integration testing:
a)
Detects defects in the entire, fully integrated system.
b)
Detects defects in the relationships and interfaces between components and groups of components in the system under test.

c)
Is performed based on the contract between the customer and the development organization.
2.

Which statement best describes integration testing?

a)
It exposes faults in the interfaces and in the interactions between integrated components.
b)
It verifies that a component is ready for integration.
c)
It verifies that the test environment can be integrated with a software product.
d)
It integrates automated test procedures with a software product.
3.

Which approach can be used for integration testing?
a)
Pareto analysis
b)
Scatter diagram

c)
Big-bang approach
d)
Cause and effect diagram
4.

Integration testing should typically occur:
a)
Before component testing
b)
After component testing
c)
After system testing

d)
After component testing, while integrating components
5.

COTS stands for:
a)
Commercial on-the-shelf software

b)
Commercial off-the-shelf software
c)
Common offshore testing software
6.

Integration testing in which no incremental testing takes place before all of the components of a system are combined to form the system is called:
a)
System testing
b)
Component testing
c)
Incremental testing

d)
Big-bang testing
7.

Which statement about integration testing in the small is correct?
a)
It tests interfaces to other systems.

b)
It tests interactions between components or subsystems.
c)
It tests individual components that have been developed.
d)
It only uses components that form part of a live system.
8.

Which of the following is not an integration strategy?

a)
Design-based
b)
Big-bang
c)
Bottom-up
d)
Top-down
Topic C

Understand System Testing

You learned about integration testing. The test level that follows integration testing consists of activities related to testing an entire integrated software system to verify that it conforms to its specified requirements. In this topic, you will understand the details of system testing.

Unlike component and integration testing, in which testing is performed against technical specifications, system testing enables you to find out if there are any inconsistencies in the functionality of the software product from the perspective of the customer and end users. Because many types of functional and nonfunctional behavior are displayed as a result of interactions between the software product, operating system, and other system resources, system testing enables you to observe and test them. In addition, system testing enables you to test the capabilities of the system up to and beyond the specified hardware and software requirements.

System Testing
Definition:
System testing is the process of testing an integrated system to validate that it meets specified requirements. During system testing, you validate whether all customer and end-user requirements are fully met. In addition, system testing enables you to observe and test the behavior of a system that is visible only after all system components have been integrated. This test level is most often the final test performed on a software product on behalf of the software development organization.

System testing is performed in an environment which is as similar as possible to the expected functional environment of a system. Instead of using stubs and drivers, you use intended hardware and software to complete tests. System testing involves evaluating both functional and nonfunctional requirements, such as reliability, usability, performance, and security, of a system. It enables you to detect defects related to external hardware and software interfaces, such as problems related to ineffective memory usage.

As system testing requires many resources, a special testing environment, and long test times, typically specialist testers that form a dedicated and independent testing team perform these tests. At times, third party teams or business analysts also carry out system testing. The level of test independence in system testing is determined on the basis of the risks involved.

Example:
On a car sales website, the steps involved in the purchase of a car may include selecting a car, finance and insurance, booking, tracking the order, and payment. These steps can be thought of as subsystems of the car sales website. A user may need to interact with all these subsystems while purchasing a car. Although, the discrete subsystems may have been tested at the integration level, some features and functionalities related to interaction between subsystems can be tested only after all subsystems are integrated. In this case, system testing will verify if the integrated system meets all requirements, and all subsystems correctly communicate with each other.

System Testing
Definition:
System testing is the process of testing an integrated system to validate that it meets specified requirements. During system testing, you validate whether all customer and end-user requirements are fully met. In addition, system testing enables you to observe and test the behavior of a system that is visible only after all system components have been integrated. This test level is most often the final test performed on a software product on behalf of the software development organization.

Example:
On a car sales website, the steps involved in the purchase of a car may include selecting a car, arranging finance and insurance, booking the car, tracking the order, and processing payment. These steps can be thought of as subsystems of the car sales website. A user may need to interact with all of these subsystems while purchasing a car. Although, the discrete subsystems may have been tested at the integration level, some features and functionalities related to interaction between subsystems can be tested only after all subsystems are integrated. In this case, system testing will verify that the integrated system meets all requirements, and all subsystems correctly communicate with each other.

Performing System Testing
System testing is performed in an environment which is as similar as possible to the expected functional environment of a system. Instead of using stubs and drivers, you use intended hardware and software to complete tests. System testing involves evaluating both functional and nonfunctional requirements, such as reliability, usability, performance, and security, of a system. It enables you to detect defects related to external hardware and software interfaces, such as problems related to ineffective memory usage.

As system testing requires many resources, a special testing environment, and long test times, typically specialist testers that form a dedicated and independent testing team perform these tests. At times, third party teams or business analysts also carry out system testing. The level of test independence in system testing is determined on the basis of the risks involved.

Objectives of System Testing
When performing system testing, you need to follow specific test objectives.

· Verify that the complete integrated system addresses the specified functional and nonfunctional requirements. System testing also includes measuring how well requirements are met.

· Detect failures that occur because of any inaccurate, incomplete, or conflicting requirements.

· Identify requirements that are not documented or are forgotten.

· Consider system testing to be a rehearsal scenario for acceptance tests because after this test level and its related debugging, the software is passed on to the customer.

Disadvantages of Tests in the Actual Operational Environment
To save costs and effort, some projects run system tests in the operational environment of the customer. The detrimental effects of this approach are:

· In case any failures occur during system testing, they may damage the operational environment of the customer. This may lead to system crashes and data loss in the production system.

· Other systems running concurrently with the test in the operational environment may change test conditions. This is because you have limited or no control over other systems in the operational environment of the customer. This may either completely prevent you from replicating already executed tests or allow you to replicate tests with great difficulty.

Disadvantages of Tests in the Actual Operational Environment
To save costs and effort, some projects run system tests in the operational environment of the customer. The detrimental effects of this approach are:

· In case any failures occur during system testing, they may damage the operational environment of the customer. This may lead to system crashes and data loss in the production system.

· The other systems running concurrently with the test in the operational environment may change test conditions. This is because you have limited or no control over the other systems in the operational environment of the customer. Such a drawback may either completely prevent you from replicating already executed tests or cause you great difficulty replicating the tests.

Objectives of System Testing
When performing system testing, you need to follow specific test objectives.

· Verify that the complete integrated system addresses the specified functional and nonfunctional requirements. System testing also includes measuring how well requirements are met.

· Detect failures that occur because of any inaccurate, incomplete, or conflicting requirements.

· Identify requirements that are not documented or are ignored.

· Consider system testing to be a rehearsal scenario for acceptance tests because after this test level and its related debugging, the software is passed on to the customer.

System Testing Problems
Almost all problems encountered during system testing are related to documentation of requirements: the documentation is either incomplete or nonexistent. This creates problems in identifying the expected behavior of the system due to which there may be great difficulty detecting defects. The given table lists the problems encountered in system testing and their respective descriptions.

Problem

Description

Unclear system requirements

Unclear system requirements are customer requirements that are not written down anywhere; they only exist in the minds of people who are involved in a project. In case system requirements are not clear, it becomes difficult to evaluate the correct system behavior. In such situations, you invariably end up gathering information about the expected system behavior at the time of system testing.

Overlooked decisions

When you identify original requirements at the time of system testing, you find out that different people have completely different perspectives on the same issues. In such situations, you not only gather requirements, but also insist on making all overlooked decisions, which may still affect the system. This entire information-gathering and decision-making process may be very time-consuming, and may adversely affect the test schedule and the release of the final product.

Likelihood of project failure

If system requirements are not specified and documented at the beginning of a project, software developers may not get clear objectives. This may lead to the development of a system that does not meet the requirements of the customer. In addition, as system testing takes place quite late in a project life cycle, it is not possible to incorporate requirements-related changes at this stage in the development life cycle; and therefore the project has to be declared as canceled.

System Testing Problems
Almost all problems encountered during system testing are related to incomplete or nonexistent documentation of requirements. This creates problems in identifying the expected behavior of the system, due to which you may have great difficulty detecting defects.

Problem

Description

Unclear system requirements

Unclear system requirements are customer requirements that are not written down anywhere; they only exist in the minds of people who are involved in a project. In case system requirements are not clear, it becomes difficult to evaluate the correct system behavior. In such situations, you invariably end up gathering information about the expected system behavior at the time of system testing.

Overlooked decisions

When you identify original requirements at the time of system testing, you find out that different people have completely different perspectives on the same issues. In such situations, you not only gather requirements, but also insist on making all overlooked decisions, which may still affect the system. This entire information-gathering and decision-making process may be very time-consuming, and may adversely affect the test schedule and the release of the final product.

Project may fail

If system requirements are not specified and documented at the beginning of a project, software developers may not get clear objectives. This may lead to the development of a system that does not meet the requirements of the customer. In addition, as system testing takes place quite late in a project life cycle, it is not possible to incorporate requirements-related changes at this stage in the development life cycle; and therefore the project has to be declared as canceled.

Simulators
Definition:
A simulator, also referred to as an emulator, is a device, program, or system that is used during system testing. It behaves like a system when provided with a controlled set of input values. Simulators are used to simulate the actual operational environment when performing system tests. They replace software and hardware components that may be missing, currently unavailable, or too expensive.

Example:
Examples of simulators include: terminal emulators, and emulators or simulators that substitute components in nuclear power plants

Activity 3-4

Discussing System Testing
Scenario:
Before you perform activities related to testing an entire integrated software system to verify that it conforms to its specified requirements, you may want to check your understanding on the third level of testing.

1.

The system testing team is responsible for:
a)
Performing data validation.
b)
Performing usability testing.
c)
Performing beta testing.

d)
Validating whether requirements are met completely and properly.
2.

Which statement about system testing is false?
a)
It is performed in an environment which is as similar as possible to the expected functional environment of a system.
b)
It is performed by independent testing teams.

c)
End users should be involved at this test level.
Topic D

Understand Acceptance Testing

You learned about system testing. The test level that is typically implemented after system testing in a software development life cycle model is acceptance testing. In this topic, you will get to know more about acceptance testing.

After the system testing phase is over and the software product is ready to be delivered to the customer, acceptance testing enables all project stakeholders to determine whether the product meets customer requirements and is ready to be deployed at the customer site. Acceptance testing instills confidence in both customers and the development organization that a software product meets the stated business requirements of both the parties involved. If the customer is satisfied with the software, various contractual obligations are completed and the development organization receives its final payment.

Acceptance Testing
Definition:
Acceptance testing, also known as user acceptance testing, is testing performed with respect to user needs, requirements, and business processes. It is performed to determine whether a system meets the acceptance criteria, and to enable customers, users, and other stakeholders to determine whether or not to formally accept the system. All activities under component, integration, and system test levels are performed while a software product is still under the responsibility of the development organization, before handing over the product to the customer or end users. However, prior to installing and using a software product, an acceptance test is performed with focus on the perspective and judgment of the customer. Typically, acceptance tests are the only tests in which customers are involved. At times, customers even take the complete responsibility of conducting acceptance tests. These tests are performed in an environment that is as similar as possible to the actual operational environment. Acceptance testing in the actual production environment should be strictly avoided because of a risk of damage to the other software systems.

If required, acceptance tests can be executed within lower test levels, or they can be distributed over several test levels. For example, the acceptance testing of a COTS product may be done when it is installed or integrated with the existing subsystems, the acceptance testing to verify the usability of a component may take place during component testing, or the acceptance testing of a new functionality enhancement may happen before system testing.

The scope of acceptance testing depends on the risk involved. In case a software product is developed specifically for a customer, the risk is high and it demands complete acceptance testing. On the other hand, the acceptance testing for a product that has been in use for a long time in a similar environment includes only running a few representative tests.

Example:
Consider a scenario where a user can purchase a car through a web-based GUI on an online system. The system testing performed at the development organization’s site involves testing the functionality of the website on a specific web browser and operating system combination. When the website is released for end users, they may use different web browser and operating system combinations to access the online system. Therefore, an acceptance test is performed to test the functionality of the website on maximum possible web browser and operating system combinations.

Acceptance Testing
Definition:
Acceptance testing, also known as user acceptance testing, is testing performed with respect to user needs, requirements, and business processes. It is performed to determine whether a system meets the acceptance criteria, and to enable customers, users, and other stakeholders to determine whether or not to formally accept the system. These tests are performed in an environment that is as similar as possible to the actual operational environment. Acceptance testing in the actual production environment should be strictly avoided, because of a risk of damage to the other software systems.

Example:
Consider a scenario where a user can purchase a car through a web-based GUI on an online system. The system testing performed at the development organization’s site involves testing the functionality of the website on a specific web browser and operating system combination. They may use different web browser and operating system combinations to access the online system. Therefore, an acceptance test is performed to test the functionality of the website on maximum possible web browser and operating system combinations.

Understanding Acceptance Testing
All activities under component, integration, and system test levels are performed while a software product is still under the responsibility of the development organization, before handing over the product to the customer or end users. However, prior to installing and using a software product, an acceptance test is performed with focus on the perspective and judgment of the customer. Typically, acceptance tests are the only tests in which customers are involved. At times, customers even take the complete responsibility of conducting acceptance tests.

If required, acceptance tests can be executed within lower test levels, or they can be distributed over several test levels. For example, the acceptance testing of a COTS product may be done when it is installed or integrated with the existing subsystems, the acceptance testing to verify the usability of a component may take place during component testing, or the acceptance testing of a new functionality enhancement may happen before system testing.

Acceptance Testing Scope
The scope of acceptance testing depends on the risk involved. In case a software product is developed specifically for a customer, the risk is high and it demands complete acceptance testing. On the other hand, the acceptance testing for a product that has been in use for a long time in a similar environment includes only running a few representative tests.

Acceptance Criteria
Definition:
Acceptance criteria are a set of conditions that a system must meet in order for the system to be accepted by end users. The criteria are clearly and explicitly specified in the development contract between the customer and the product development organization.

At times, development organizations understand requirements incorrectly. It is therefore, very important for customers to either design or at a minimum thoroughly review acceptance test cases. Typically, development organizations check for these criteria when performing system testing at their end; therefore, customers need only re-execute test cases that are relevant for acceptance.

Example:
The acceptance criteria explicitly specified in the development contract between the customer and the development organization for a car-sale website can be:

· It should display a catalog of different cars so that users may select specific cars for online purchase.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for online payments.

Acceptance Criteria
Definition:
Acceptance criteria are a set of conditions that a system must meet in order for the system to be accepted by end users. The criteria are clearly and explicitly specified in the development contract between the customer and the product development organization. At times, development organizations understand requirements incorrectly. It is therefore, very important for customers to either design or at a minimum thoroughly review acceptance test cases. Typically, development organizations check for these criteria when performing system testing at their end; therefore, customers need only re-execute test cases that are relevant for acceptance.

Example:
Example of Acceptance Criteria
The acceptance criteria explicitly specified in the development contract between the customer and the development organization for a car-sale website can be:

· It should display a catalog of different cars so that users may select specific cars for online purchase.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for online payments.

Types of Acceptance Testing
There are several forms of acceptance testing.

Acceptance Testing Type

Description

Contract and regulation acceptance testing

Contract acceptance testing is testing that is performed based on a contract between the customer, for whom a software product is developed specifically, and the development organization. The customer, then uses the results of acceptance tests to determine whether the product is free of major defects and the terms defined in the development contract have been met. In case a software product has been developed by an organization for its internal use, the involved departments perform contract acceptance testing.

Regulation acceptance testing, also known as compliance acceptance testing, is testing that is performed against any regulations, such as governmental, legal, or safety regulations, that must be adhered to by a software product.

User acceptance testing

User acceptance testing determines the fitness for use of the system by end users. User acceptance testing is specifically recommended if the customer and the end user are different individuals. This is because end users may have completely different expectations of the software product.

Operational acceptance testing

Operational acceptance testing is also known as operational or production acceptance testing. System administrators or operators typically perform this testing to focus on the operational aspects of a software product in a simulated production environment. It may include testing of backup and restore cycles, disaster recovery mechanisms, user management tasks, maintenance tasks, and checks for security vulnerabilities.

Field testing

Alpha testing is simulated or actual testing that is performed by potential customers, users, or an independent testing team at the development organization’s site, but outside the development organization. This type of testing is typically performed for COTS software products as a form of internal acceptance testing.

Beta testing is operational testing that is performed by potential and/or existing customers or users at an external site, without any involvement of the development organization. This type of testing is typically performed for COTS software products to get feedback from the market.

[image: image25]
Organizations may use other terms, such as factory acceptance testing and site acceptance testing, for systems that are tested before and after being moved to a customer's site.

Activity 3-5

Discussing Acceptance Testing
Scenario:
Before you assist the customer, end users, and other stakeholders to run acceptance tests on the developed software product, you may want to check your understanding on the last level of testing.

1.

Acceptance testing enables you to:
a)
Test the usability of system interfaces.
b)
Check whether a software product is stable enough to be tested.
c)
Validate the functionality of a software product based on requirements.

d)
Test a software product with respect to user needs, requirements, and business processes.
2.

Acceptance tests can be executed within lower test levels, or they can be distributed over several test levels. Examples of this are:


a)
A COTS product is tested for acceptance when it is installed or integrated with existing subsystems.

b)
A component acceptance tested for usability during component testing.
c)
A product tested by potential customers and users at the development organization’s site, but outside the development organization.
d)
A product tested by potential and/or existing customers or users at an external site, without any involvement of the development organization.
3.

Beta testing is:

a)
Performed by customers at their own site.
b)
Performed by customers at the software developer's site.
c)
Performed by an independent test team.
d)
Used to test a software product developed for a specific customer.
4.

Field testing is:
a)
The same as alpha testing.
b)
The same as beta testing.

c)
A combination of alpha and beta testing.
d)
The same as operational acceptance testing.
5.

Alpha testing is different from beta testing because of:
a)
The people who perform testing.
b)
The types of tests that are performed.
c)
The degree to which testing is performed.

d)
The location where tests are performed.
Lesson 3 Follow-up
In this lesson, you developed an understanding of various test levels. This understanding enables you to group various test activities together for better test organization and management. It also enables you to identify the parts of a software product that may otherwise have been missed or tested repeatedly.

1.

Are the testing activities performed in your organization grouped into various categories? How?

Answers will vary, but may include:

Yes, the activities are grouped into various categories based on the model followed in a software development project, phases of the software development process in which testing activities are carried out, and the phases of the test process in which testing activities are carried out.

2.

After going through the test levels covered in this lesson, do you think that you need to modify the way testing activities are grouped in your organization? Why?

Answers will vary, but may include:

Yes, based on the software development model followed in a project, testing activities can be grouped into the levels that are covered in this lesson. It will help in planning, controlling, and managing a project better because in this lesson, testing activities are grouped exactly in the order in which they are typically executed in real-life.

Lesson 4
Understanding Test Types
Lesson Objectives:

In this lesson, you will explain test types.

You will:

· Explain functional testing.

· Explain nonfunctional testing.

· Explain static testing.

· Explain dynamic testing.

· Explain other test types.

Introduction

You developed an understanding of different test levels. For a successful project, the objectives of each test level can be clearly defined and achieved by implementing various test types. In this lesson, you will learn about test types.

To meet the objectives of each test level, merely testing the functionality of a system or its components may not be sufficient because the focus and objectives of testing vary with each test level. An understanding of different test types enables you to select the appropriate test types for fulfilling specific test objectives. In addition, it enables you to easily make and communicate decisions against each test objective.

Topic A

Understand Functional Testing

The most commonly-implemented test type includes activities related to testing the input/output behavior of a software system or its components. In this topic, you will learn about functional testing.

Functional testing enables you to validate a system and its components against their functional requirements, which specify what a system and its components do. It enables you to test a system against its implicit and explicit functional specifications. Functional testing instills confidence in customers and developers that all of the requirements, such as appropriateness, accuracy, interoperability, and security, that are preconditions for a system to be applicable are met.

Test Types
Definition:
A test type is a group of test activities that are intended to test a system or its components with focus on a specific test objective. The activities may include testing the functionality of a system or its components; their nonfunctional characteristics, such as usability and reliability; the design or structure of the system and its components; or verification of the correctness of changes made while debugging a system. Based on the objectives, the activities in a test type may be spread across one or more test levels or phases.

Test activities are divided into various categories according to the given types:

· Testing of functional characteristics of a software product

· Testing of nonfunctional characteristics of a software product

· Testing of software structure/architecture

· Testing related to changes

Example:
Different groups into which test activities can be categorized, based on the phase of testing in which they are carried out can be:

· Component testing

· System testing

· System integration testing

· User acceptance testing

Test Types
Definition:
A test type is a group of test activities that are intended to test a system or its components with focus on a specific test objective. The activities may include testing the functionality of a system or its components; their nonfunctional characteristics, such as usability and reliability; the design or structure of the system and its components; or verification of the correctness of changes made while debugging a system. Based on the objectives, the activities in a test type may be spread across one or more test levels or phases.

Example:
Categories of Test Activities
Test activities are divided into various categories according to the given types:

· Testing of functional characteristics of a software product

· Testing of nonfunctional characteristics of a software product

· Testing of software structure/architecture

· Testing related to changes

Different groups into which test activities can be categorized, based on the phase of testing in which they are carried out can be:

· Component testing

· System testing

· System integration testing

· User acceptance testing

Functionality
Definition:
Functionality of a software product refers to its capability to provide functions that address explicit and implicit requirements from the product against specified conditions. Functionality specifies the behavior of a system; and the implementation of functionality is a precondition for a successful software product. Functionality requirements from a software product are typically described in requirements specification or functional specification documents.

Example:
The functionality requirements from an online tea-sale portal can be:

· It should display a catalog of different types of tea so that users may select specific tea types for online purchase.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for online payments.

Characteristics of Functionality
Functionality of a software product is determined by several characteristics. The given table lists various functionality characteristics and their respective descriptions.

Functionality Characteristic

Description

Suitability
The capability of a software product to provide an appropriate set of functions for specified tasks, and customer and end-user requirements.

Accuracy
The capability of a software product to provide the agreed and correct output with the required degree of precision.

Interoperability
The capability of a software product to collaborate with one or more specified systems, subsystems, or components.

Security
The capability of a software product to prevent unauthorized access, whether unintentional or deliberate, to programs and data.

Functional Testing
Definition:
Functional testing is a type of testing that is based on an analysis of functional specifications of a system or its components. It includes all kinds of tests that verify the input/output behavior of a system and its components. To perform functional testing, test cases are developed by using black-box testing methods, and functional requirements are used as test bases. At times, some functional requirements may be implicit and not documented. Although it is difficult to test against such requirements, functional testing also includes testing a software product against its assumed and understood requirements. This type of testing may be performed at all test levels. For example, even a component can be tested for its functionality based on component specifications.

At times, functional testing is considered to be the same as black-box testing; however, this assumption is false because black-box testing also includes testing nonfunctional characteristics of software.

You can perform functional testing from two perspectives, requirements-based or business-process-based.

Example:
When performing functional testing for an online tea-sale portal, you may check for the functional aspects of the website, such as:

· It should display a catalog of different types of tea, which allows users to select specific tea types for online purchase.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for online payments.

Functional Testing
Definition:
Functional testing is a type of testing that is based on an analysis of functional specifications of a system or its components. It includes all kinds of tests that verify the input/output behavior of a system and its components. To perform functional testing, test cases are developed by using black-box testing methods, and functional requirements are used as test bases.

Example:
Example of Functional Testing
When performing functional testing for an online tea-sale portal, you must check if the portal displays a catalog of different types of tea and allows users to select specific tea types. You must also check for errors arising from database interactions while fetching catalog information from a central database. Also, you must check if the portal provides smooth and secure payment transactions.

Understanding Functional Testing
At times, some functional requirements may be implicit and not documented. Although it is difficult to test against such requirements, functional testing also includes testing a software product against its assumed and understood requirements. This type of testing may be performed at all test levels. For example, even a component can be tested for its functionality based on component specifications.

At times, functional testing is considered to be the same as black-box testing; however, this assumption is false because black-box testing also includes testing nonfunctional characteristics of software. You can perform functional testing from two perspectives, requirements-based or business-process-based.

Requirements-Based Testing
Definition:
Requirements-based testing is a functional testing approach in which test cases are designed based both on test objectives and conditions. When performing this type of testing, you typically start with the table of contents of the requirements specification document to create a list of items that are to be tested and items that are not to be tested. At least one test case is designed and created for each requirement. In addition, you must prioritize test cases based on the risks involved; this is done on the basis of prioritizing requirements as mentioned in the specification document. This practice ensures that the entire testing effort includes the most important and critical tests.

Requirements-based functional testing focuses on single system functions; and this test type is primarily used at the system testing and acceptance testing levels.

Example:
When performing requirements-based testing for an online tea-sale portal, you may check for the functional aspects of the website that are based on requirements, such as:

· It should display a catalog of different types of tea.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for making online payments.

Requirements-Based Testing
Definition:
Requirements-based testing is a functional testing approach in which test cases are designed based both on test objectives and conditions. When performing this type of testing, you typically start with the table of contents of the requirements specification document to create a list of items that are to be tested and items that are not to be tested. At least one test case is designed and created for each requirement. In addition, you must prioritize test cases based on the risks involved; this is done on the basis of prioritizing requirements as mentioned in the specification document. This practice ensures that the entire testing effort includes the most important and critical tests.

Example:
Example of Requirements-based Testing
When performing requirements-based testing for an online tea-sale portal, you may check for the functional aspects of the website that are based on requirements, such as:

· It should display a catalog of different types of tea.

· It should fetch information for the catalog from a central server.

· It should use secure credit card transactions for making online payments.

Business Process-Based Testing
Definition:
Business process-based testing is a functional testing approach in which test cases are designed based on the descriptions and/or knowledge of business processes. These processes describe the situations that would probably arise in the day-to-day business use of the software product. For example, a business process for a payroll processing system may be based on a situation where an employee joins an organization, he/she is paid on a monthly basis, and then the employee leaves the organization. When performing this type of testing, you typically start with creating and prioritizing test scenarios based on the relevance, frequency of use, and context of business processes followed by the customer.

Business process-based functional testing focuses on an entire process, which may consist of several steps, and therefore, several tests.

Example:
When performing business process-based testing for an online tea-sale portal, you may check for the functional aspects, which are based on the situations that would probably arise in the day-to-day business use of the portal, such as:

· A user logs in to the website, selects the required tea, makes the payment, fills the feedback form, and then logs out.

· A user logs in to the website, selects the required tea, clicks the cancel button, and then logs out.

Business Process-Based Testing
Definition:
Business process-based testing is a functional testing approach in which test cases are designed based on the descriptions and/or knowledge of business processes. These processes describe the situations that would probably arise in the day-to-day business use of the software product. When performing this type of testing, you typically start with creating and prioritizing test scenarios based on the relevance, frequency of use, and context of business processes followed by the customer.

Example:
Example of Business Process-based Testing
To perform business process-based testing for an online tea-sale portal, you must create test cases that check the business processes involved in the portal. These include creating a test case that checks the portal functionality for user login, selection of products, payment, filling of a feedback form, and logout in that sequence. Also, you must create test cases that enable you to check if the portal enables users to log in, perform transactions and cancel them at any point, and log out.

Interoperability Testing
Definition:
Interoperability testing is a type of functional testing that enables you to determine the interoperability of a software product; it enables you to prove that the end-to-end functionality between two or more communicating systems or components is in accordance with the requirements. The extent of this testing type is determined by the system or component under test, and the system or component against which interoperability needs to be tested. Interoperability tests are performed based on the functionality of a software product as would be experienced by an end user or another software product; these tests do not check for errors at the protocol level. When performing this type of testing, if the system or component against which interoperability needs to be tested is not available, stubs, drivers, or simulators are used.

Example:
In the case of an online tea-sale portal, for receiving online payments made by end users, the web application may have to communicate with payment gateways. These payment gateways may have been developed using different technologies than what is used in the web application. Interoperability testing ensures that the application uses standard protocols so that it can communicate efficiently with the payment gateways.

Interoperability Testing
Definition:
Interoperability testing is a type of functional testing that enables you to determine the interoperability of a software product. It enables you to prove that the end-to-end functionality between two or more communicating systems or components is in accordance with requirements. When performing this type of testing, if the system or component against which interoperability needs to be tested is not available, stubs, drivers, or simulators are used.

Example:
Understanding Interoperability Testing
The extent of interoperability testing type is determined by the system or component under test, and the system or component against which interoperability needs to be tested. Interoperability tests are performed based on the functionality of a software product as would be experienced by an end user or another software product; these tests do not check for errors at the protocol level.

Example of Interoperability Testing
In the case of an online tea-sale portal, for receiving online payments made by end users, the web application may have to communicate with payment gateways. These payment gateways may have been developed using different technologies than what is used in the web application. Interoperability testing ensures that the application uses standard protocols so that it can communicate efficiently with the payment gateways.

Security Testing
Definition:
Security testing is a type of functional testing that enables you to determine the security of a software product. It enables you to investigate functions related to the detection of threats. For example, testing firewalls that detect threats such as viruses and other malicious programs. This type of testing is also performed to fulfill software-specific standards, agreements, legal requirements, and other similar regulations. Security testing checks the functionality of a software product in terms of both access security and data security. The aspects that are typically covered by security testing include confidentiality, integrity, authentication, authorization, availability, and non-repudiation.

Example:
When performing security testing for an online tea-sale portal, you may check for the following specifications:

· Users should be able to log in using only valid user names and passwords.

· Online payments should be secure.

· Only users who have completed a transaction should be able to access the feedback form.

Security Testing
Definition:
Security testing is a type of functional testing that enables you to determine the security of a software product. It enables you to investigate functions related to the detection of threats. Security testing checks the functionality of a software product in terms of both access security and data security. The aspects that are typically covered by security testing include confidentiality, integrity, authentication, authorization, availability, and non-repudiation.

Example:
Example of Security Testing
Security testing for an online tea-sale portal may include checking if the portal validates user names and passwords and allows only valid users to log in. It also involves checking the security features implemented for online payment transactions.

Activity 4-2

Discussing Functional Testing
Scenario:
Before you perform the activities related to testing the input/output behavior of a software product or its components, you may want to check your understanding on the most commonly-implemented test type.

1.

Functional testing:


a)
Typically means behavioral testing.
b)
Specifies how well or how fast something is done.
c)
Includes simultaneous design, development, and execution of test cases.

d)
Should be supported with other test types to address quality risks such as performance, load, and capacity.
2.

Identify a test type.
a)
System testing

b)
Functional testing
c)
Component testing
d)
Acceptance testing
Topic B

Understand Nonfunctional Testing

You discovered the intricacies of functional testing. Another commonly-implemented test type includes activities related to testing the quality characteristics or nonfunctional attributes of a software product. In this topic, you will learn about nonfunctional testing.

Nonfunctional testing enables you to validate a system or its components against nonfunctional requirements, which specify how well or how fast something is done. This type of testing builds customer and end user satisfaction with the product that it meets requirements such as reliability, usability, and efficiency. In addition, nonfunctional testing instills confidence in all stakeholders that a system can be easily modified, if required, and can be quickly installed in new environments.

Nonfunctional Testing
Definition:
Nonfunctional testing is a type of testing that includes activities related to testing the attributes of a system or its components that are not associated with its functionality such as reliability, efficiency, usability, maintainability, and portability of the system. This testing type enables you to determine how well or with what quality a system and its components carry out their functions.

Similar to functional testing, nonfunctional testing is also performed at all test levels. Nonfunctional testing is typically performed by selecting and reusing existing functional test cases, through which the functionality of the entire system can be observed. When executing the test cases, nonfunctional characteristics are measured, and if the actual value is within a specified limit, the test is considered passed; otherwise, it is considered failed.

Example:
When performing nonfunctional testing for an online tea-sale portal, you may check for the nonfunctional aspects of the website, such as:

· It should provide support for 100 users simultaneously.

· Users should be able to open the website with both Microsoft Internet Explorer and Firefox.

Nonfunctional Testing
Definition:
Nonfunctional testing is a type of testing that includes activities related to testing the attributes of a system or its components that are not associated with its functionality. The attributes include reliability, efficiency, usability, maintainability, and portability of the system. This testing type enables you to determine how well or with what quality a system and its components carry out their functions.

Example:
Example of Nonfunctional Testing
Nonfunctional testing for an online tea-sale portal requires you to test whether the portal enables a specified number of users access the portal at any given time. You must also check if the portal supports different browsers that may be used by potential users.

Performing Nonfunctional Testing
Similar to functional testing, nonfunctional testing is also performed at all test levels. Nonfunctional testing is typically performed by selecting and reusing existing functional test cases, through which the functionality of the entire system can be observed. When executing the test cases, nonfunctional characteristics are measured, and if the actual value is within a specified limit, the test is considered passed; otherwise, it is considered failed.

Performance Testing
Definition:
Performance testing is a type of nonfunctional testing that includes activities related to testing the performance of a software product. Here performance refers to the degree to which a system or its components perform their specified functions within the given constraints such as processing time and throughput rate. The objective of performance testing is to verify that a software product meets its performance requirements. This testing type enables you to determine whether any hardware and/or software factors affect the performance of a software product. In addition, fixing the defects detected during performance testing enables developers to fine-tune a software product by optimizing the allocation of system resources. Finally, this test type enables you to predict the future performance levels of a software product, which in turn, enables stakeholders to plan for subsequent releases of the software product.

Performance testing is usually carried out at a system level. And, measurable performance objectives of a software product are typically clearly articulated by customers in the requirements specification document.

Example:
When running performance tests for an online tea-sale portal, you may check for performance-related requirements of the website, such as:

· The graphics on the website should be fast to load.

· The website should provide high availability and fast response time for both enquiries and purchase transactions.

Performance Testing
Definition:
Performance testing is a type of nonfunctional testing that includes activities related to testing the performance of a software product. Here, performance refers to the degree to which a system or its components perform their specified functions within the given constraints such as processing time and throughput rate. The objective of performance testing is to verify that a software product meets its performance requirements. This testing type enables you to determine whether any hardware and/or software factors affect the performance of a software product.

Example:
Advantages of Performance Testing
Fixing the defects detected during performance testing enables developers to fine-tune a software product by optimizing the allocation of system resources. Finally, this test type enables you to predict the future performance levels of a software product, which in turn, enables stakeholders to plan for subsequent releases of the software product.

Performance testing is usually carried out at a system level. And, measurable performance objectives of a software product are typically clearly articulated by customers in the requirements specification document.

Example of Performance Testing
Performance testing for an online tea-sale portal includes checking the load time of graphics used in the portal. It also includes checking the portal’s response to user query and transactions.

Types of Performance Testing
You can carry out two types of performance tests on systems and their components. The given table lists various performance test types and their respective descriptions.

Performance Test Type

Description

Load testing
A type of performance testing that is conducted to determine the behavior of a system or its components with increasing load, where load is a series of inputs that simulates a group of transactions. A transaction is a unit of work as seen from the perspective of a user; for example, the number of users who can access a website simultaneously. The objective of load testing is to evaluate the load that can be handled by a system or its components.

Stress testing
A type of performance testing that is conducted to determine the behavior of a system or its components at or beyond the limits of their specified or projected workloads, or with reduced availability of resources, such as access to servers or memory. The objective of stress testing is to try to crash the system and to find the circumstances under which it will crash.

Usability Testing
Definition:
Usability testing is a type of nonfunctional testing that includes activities related to testing the extent to which a software product is understood, easy to learn and operate, and attractive to end users under specific conditions. In this test type, a software product is evaluated by testing it on its end users; this provides a real-time perspective of how end users handle a software product. The objective of usability testing is to observe end users as they work on a software product to detect errors and areas of improvement. When performing usability testing, test items are measured on parameters such as how much time and how many steps need to be performed for completing basic tasks, how many mistakes users make, how much users remember after use or nonuse of the product, and how users feel about completed tasks.

Example:
When performing usability testing for an online tea-sale portal, you may check for the usability-related requirements of the website, such as:

· The controls on the website should be easy to use and user-friendly.

· The graphics on the website should be fast to load.

Usability Testing
Definition:
Usability testing is a type of nonfunctional testing that includes activities related to testing the extent to which a software product is understood, easy to learn and operate, and attractive to end users under specific conditions. In this test type, a software product is evaluated by testing it on its end users; this provides a real-time perspective of how end users handle a software product. The objective of usability testing is to observe end users as they work on a software product to detect errors and areas of improvement.

Example:
Example of Usability Testing
When you perform usability testing for an online tea-sale portal, you may analyze mock users use the portal and determine if the website design and controls are user friendly. You may also record any difficulties faced by users in using the portal and suggest corrective actions to overcome them.

When performing usability testing, test items are measured on parameters such as how much time and how many steps need to be performed for completing basic tasks, how many mistakes users make, how much users remember after use or nonuse of the product, and how users feel about completed tasks.

Maintainability Testing
Definition:
Maintainability testing is a type of nonfunctional testing that includes activities related to testing the ease with which a software product can be modified to fix defects, to meet new requirements, or to easily maintain in the future, or can be customized to a different environment. A maintainable software product should enable developers to fully understand its programs and their contexts. Developers include both who created the original programs and who build on the developed programs. When performing maintainability testing on code, the aspects that you typically test for include code structure and modularity of code, and the quality of comments in it. Whereas, when performing maintainability testing on documentation, you typically look for adherence to standards and understandability.

Example:
When performing maintainability testing for an online tea-sale portal, you may check that all documents are available at all times, so that they can be referred to whenever required, and the documents are traceable whenever any change is required in the future.

Maintainability Testing
Definition:
Maintainability testing is a type of nonfunctional testing that includes activities related to testing the ease with which a software product not only can be modified to fix defects, to meet new requirements, or to easily maintain in the future, but also can be customized to a different environment. A maintainable software product should enable developers to fully understand its programs and their contexts. When performing maintainability testing on code, the aspects that you typically test for include structure and modularity of code, and the quality of comments in it. Whereas, when performing maintainability testing on documentation, you typically look for adherence to standards and understandability.

Example:
Example of Maintainability Testing
When performing maintainability testing for an online tea-sale portal, you may check that all documents are available at all times, so that they can be referred to whenever required, and the documents are traceable whenever any change is required in the future.

Reliability Testing
Definition:
Reliability testing is a type of nonfunctional testing that includes activities related to testing the ability of a software product to perform its required functions under specific conditions for a specified period, or for a specified number of times. The objective of reliability testing is to detect potential problems with the design and remove them before a software product is released to customers. You can perform this type of testing at various levels; for example, the reliability of a complex system may be tested at component, subsystem, and system level.

When testing a complex system for reliability, it is unlikely that you can find all potential failures. This is because the different combinations of alternate execution paths through a large and complex system are high. To address this problem, you test a complete system for the most probable scenarios under normal usage conditions and validate that the system performs as expected. In case time permits, you can apply more complex tests to detect inventive defects.

Example:
To perform reliability testing on an online tea-sale portal, you may keep the website running continuously for a month during user acceptance tests. If the website does not report any serious defects, it can be considered reliable and sent for the next phase of testing.

Reliability Testing
Definition:
Reliability testing is a type of nonfunctional testing that includes activities related to testing the ability of a software product to perform its required functions under specific conditions for a specified period, or for a specified number of times. The objective of reliability testing is to detect potential problems with the design and remove them before a software product is released to customers.

Example:
Performing Reliability Testing
You can perform this type of testing at various levels; for example, the reliability of a complex system may be tested at component, subsystem, and system level. When testing a complex system for reliability, it is unlikely that you can find all potential failures. This is because the different combinations of alternate execution paths through a large and complex system are high. To address this problem, you test a complete system for the most probable scenarios under normal usage conditions and validate that the system performs as expected. In case time permits, you can apply more complex tests to detect inventive defects.

Example of Reliability Testing
To perform reliability testing on an online tea-sale portal, you may keep the website running continuously for a month during user acceptance tests. If the website does not report any serious defects, it can be considered reliable and sent for the next phase of testing.

Portability Testing
Definition:
Portability testing is a type of nonfunctional testing that includes activities related to testing the ease with which a software product can be transferred from one hardware or software environment to another. This type of testing is extremely critical for a software product that is expected to be installed and executed on multiple hardware environments or software platforms. Portability is typically measured in terms of the maximum amount of effort that is acceptable to migrate a software product, convert its related data, and update its documentation. Similar to interoperability testing, simulators are used to perform portability testing if required environments are not available.

Example:
When performing portability testing for an online tea-sale portal, you may check that the website can be opened with all commonly-used web browsers. In addition, you may check that it works on different kinds of hardware and operating system combinations.

Portability Testing
Definition:
Portability testing is a type of nonfunctional testing that includes activities related to testing the ease with which a software product can be transferred from one hardware or software environment to another. This type of testing is extremely critical for a software product that is expected to be installed and executed on multiple hardware environments or software platforms. Portability is typically measured in terms of the maximum amount of effort that is acceptable to migrate a software product, convert its related data, and update its documentation. Similar to interoperability testing, simulators are used to perform portability testing if required environments are not available.

Example:
Example of Portability Testing
When performing portability testing for an online tea-sale portal, you may check that the website can be opened with all commonly-used web browsers. In addition, you may check that it works on different kinds of hardware and operating system combinations.

Activity 4-3

Discussing Nonfunctional Testing
Scenario:
Before you perform the activities related to testing the quality characteristics or nonfunctional attributes of a software product, you may want to check your understanding on nonfunctional testing.

1.

Which statement about performance testing is incorrect?
a)
Its objective is to verify that a product meets its performance requirements.
b)
It determines whether any hardware or software factors affect the performance of a product.
c)
It enables developers to fine-tune a product by optimizing the allocation of system resources.

d)
It ensures that developers fully understand the programs and their contexts.
2.

Nonfunctional testing comprises:
a)
Testing a system to obtain user approval.
b)
Locating the parts of a system that do not function properly.

c)
Testing the quality attributes of the system.
d)
Testing based on an analysis of functional specifications of a system.
Topic C

Understand Static Testing

You understood the details of nonfunctional testing. Yet another basis for determining the test type for items is to find out whether testing would include activities related to manual checking and static analysis of the test items. In this topic, you will learn about static testing.

Static testing enables you to find defects and deviations from the defined specifications, standards, and/or plans. In addition, the outcomes of these tests and analyses enable you to optimize the software development and testing processes. An understanding of static testing enables you to prevent defects and deviations as early as possible in the development life cycle, so that they do not adversely affect subsequent product development. This in turn, enables you to save the product development and testing teams from expensive rework.

Static Testing
Definition:
Static testing is a type of testing that involves examining a software product or its components at specification or implementation level, without executing the product or its components. This test type involves reviews and static analysis of test items instead of executing test items with test data. Static testing is typically performed on documents and code by one or more reviewers by either intensively inspecting the documents, or by using specific tools.

The objective of static testing is to detect defects and deviations from the current specifications, standards, or plans. It also enables you to discover missing requirements, defects in design, nonmaintainable code, and inconsistent interface specifications. The results of this test type are used to optimize the development and testing processes. Static testing enables projects to recognize any defects and deviations as early as possible in the development life cycle, so that they do not adversely affect the further development and testing processes.

[image: image26]
You can perform static testing on documents by using tools only when the documents have been created using rules, whose testing can be automated.

Example:
An instance when stating testing is conducted can be a meeting in which project documents, such as contracts, requirements specifications, and design specifications, are subject to review by experts.

Static Testing
Definition:
Static testing is a type of testing that involves examining a software product or its components at specification or implementation level, without executing the product or its components. This test type involves reviews and static analysis of test items instead of executing test items with test data. Static testing is typically performed on documents and code by one or more reviewers by either intensively inspecting the documents, or by using specific tools.

[image: image27]
You can perform static testing on documents by using tools only when the documents have been created using rules, whose testing can be automated.

Example:
Objective of Static Testing
Static testing involves meetings in which project documents, such as contracts, requirements specifications, and design specifications are subject to reviews by experts. The objective of static testing is to detect defects and deviations from the current specifications, standards, or plans. It also enables you to discover missing requirements, defects in design, nonmaintainable code, and inconsistent interface specifications. The results of this test type are used to optimize the development and testing processes. Static testing enables projects to recognize any defects and deviations as early as possible in the development life cycle, so that they do not adversely affect the further development and testing processes.

Benefits of Static Testing
Static testing enables you to improve the quality of both work products and the development processes. Various benefits of static testing are:

· Provides early feedback on quality issues because testing begins early in the development life cycle.

· Keeps rework costs relatively low because defects are detected at early stages.

· Increases development productivity figures as the rework effort is considerably low.

· Promotes information exchange between members of the testing team.

· Contributes to an increased awareness of quality issues.

Benefits of Static Testing
Static testing enables you to improve the quality of both work products and development processes. Various benefits of static testing are:

· Provides early feedback on quality issues because testing begins early in the development life cycle.

· Keeps rework costs relatively low because defects are detected at early stages.

· Increases development productivity figures as rework effort is considerably low.

· Promotes information exchange between members of the testing team.

· Contributes to an increased awareness of quality issues.

Reviews
Definition:
A review is a type of static testing that involves activities related to evaluating a product or project status to determine the discrepancies between planned and actual results, and to suggest improvements, if any. Reviews involve the application of human analytical capabilities to test and assess complex issues. This is implemented by means of rigorous examination and attempts to understand the items that are under test. All project documents, such as contracts, requirements specifications, design specifications, program code, test plans, and user manuals, are typically subject to reviews.

To find defects and inconsistencies well in time, reviews are usually performed at the earliest after project documents are completed. Removing defects improves the quality of documents and positively affects the entire product development process because further development takes place by using documents that are defect free.

Example:
An instance where a review is conducted can be a meeting in which a project manager guides project team members through the project plan and his or her thought process, to establish a common ground and to collect feedback.

Reviews should be performed in a way that the authors or developers feel that only documents or program code are being analyzed, and not themselves.

Reviews
Definition:
A review is a type of static testing that involves activities related to evaluating a product or project status to determine the discrepancies between planned and actual results, and to suggest improvements, if any. Reviews involve the application of human analytical capabilities to test and assess complex issues. This is implemented by means of rigorous examination and attempts to understand the items that are under test. All project documents, such as contracts, requirements specifications, design specifications, program code, test plans, and user manuals, are typically subject to reviews.

Example:
Performing Reviews
Reviews involve a meeting in which a project manager guides project team members through the project plan and his or her thought process, to establish a common ground and to collect feedback. To find defects and inconsistencies well in time, reviews are usually performed at the earliest after project documents are completed. Removing defects improves the quality of documents and positively affects the entire product development process because further development takes place by using documents that are defect free.

Reviews should be performed in a way that the authors or developers feel that only documents or program code are being analyzed, and not themselves.

Benefits of Reviews
There are various benefits of reviews, besides reducing defects.

· Remove defects in an inexpensive way. When defects are detected and fixed early, it leads to an increase in development productivity because fewer resources are required to detect and fix defects later in the development life cycle, when the task is considerably more expensive.

· Reduce the time required to develop a software product because of reduction in rework.

· Reduce the cost and time required to perform tests related to executing code because the items under those tests contain fewer defects.

· Decrease the cost of the entire product development life cycle because defects are detected quite early.

· Reduce the failure rate during operation of the system as documents that form the bases of all testing are thoroughly examined.

· Lead to joint learning as examinations are performed by a team of people. This in turn, leads to improvements in working methods, and better quality of products that are subsequently produced.

· Force authors and developers to discover forgotten issues, if any, because the examiners involved require a clear understanding of the underlying facts.

· Divide responsibility for quality of the examined item among the entire team, and provide a common understanding of the item to the entire team.

Benefits of Reviews
There are various benefits of reviews, besides reducing defects.

· Remove defects in an inexpensive way. When defects are detected and fixed early, it leads to an increase in development productivity because fewer resources are required to detect and fix defects later in the development life cycle, when the task is considerably more expensive.

· Reduce the time required to develop a software product because of reduction in rework.

· Reduce the cost and time required to perform tests related to executing code because the items under those tests contain fewer defects.

· Decrease the cost of the entire product development life cycle because defects are detected quite early.

· Reduce the failure rate during operation of the system as documents that form the bases of all testing are thoroughly examined.

· Lead to joint learning as examinations are performed by a team of people. This in turn, leads to improvements in working methods, and better quality of products that are subsequently produced.

· Force authors and developers to discover forgotten issues, if any, because the examiners involved require a clear understanding of the underlying facts.

· Divide responsibility for quality of the examined item among the entire team, and provide a common understanding of the item to the entire team.

The Review Process
Typically, reviews follow a well-defined process. The review process consists of six steps:

1. Planning: When performing overall planning, decisions need to be made regarding which documents will be examined using which review technique and the related estimated effort. When planning individual reviews, test leaders decide on the required resources and ensure that items to be reviewed are complete enough. In addition, the perspectives with which items need to be reviewed and the high-risk parts of items to be tested are also determined while planning.

2. Kick-off: The information required by people involved in a review is provided during kick-off. The intent of this step is to share information about the item to be reviewed, and the importance and objective of the review. In case the people involved in the review are not familiar with the subject matter of the item to be reviewed, a short introduction of the subject is provided. In addition, the team is also provided access to the documents against which the review is to be performed.

3. Individual preparation: The members of the review team adequately prepare themselves for the review meeting, which is the next step in the process. The team members thoroughly study the items to be reviewed and test them against the documents that form the review bases. In addition, the reviewers make notes of any deficiencies, queries, and remarks.

4. Review meeting: In this meeting, the reviewers fearlessly communicate their views about the items. The test leaders or moderators ensure that all conflicts are resolved, and items are assessed and not the authors or developers. Typically, this meeting has a time limit and ends with an evaluation whether the reviewed item meets the quality requirements. The output of a review meeting is a list of detected defects and suggestions regarding whether to accept, fix, or re-create the reviewed item.

5. Rework: Decisions are made regarding whether to follow the suggestions made during the review meeting, or to select a different approach to fixing or recreating the reviewed items. Typically, authors or developers fix defects on the basis of the suggestions made during the review meeting. In case a different approach is followed, the project management team takes complete responsibility.

6. Follow-up: Defect correction is typically followed up by managers or moderators. In case the outcome of the review meeting was unacceptable, another review meeting is scheduled and the items are reevaluated. In addition, an intensive assessment of the complete review process is performed to improve the review and software development processes.

The Review Process
Typically, reviews follow a well-defined process. The review process consists of six stages.

Review Stage

Description

Planning

When performing the overall planning, decisions need to be made regarding which documents will be examined using which review technique and the related estimated effort. When planning individual reviews, test leaders decide on the required resources and ensure that items to be reviewed are complete enough. In addition, the perspectives with which items need to be reviewed and the high-risk parts of items to be tested are also determined while planning.

Kick-off

The information required by people involved in a review is provided during kick-off. The intent of this step is to share information about the item to be reviewed, and the importance and objective of the review. In case the people involved in the review are not familiar with the subject matter of the item to be reviewed, a short introduction of the subject is provided. In addition, the team is also provided access to the documents against which the review is to be performed.

Individual preparation

The members of the review team adequately prepare themselves for the review meeting, which is the next step in the process. The team members thoroughly study the items to be reviewed and test them against the documents that form the review bases. In addition, the reviewers make notes of any deficiencies, queries, and remarks.

Review meeting

In this meeting, the reviewers fearlessly communicate their views about the items. The test leaders or moderators ensure that all conflicts are resolved, and items are assessed and not the authors or developers. Typically, this meeting has a time limit and ends with an evaluation whether the reviewed item meets the quality requirements. The output of a review meeting is a list of detected defects and suggestions regarding whether to accept, fix, or recreate the reviewed item.

Rework

Decisions are made regarding whether to follow the suggestions made during the review meeting, or to select a different approach to fixing or recreating the reviewed items. Typically, authors or developers fix defects on the basis of the suggestions made during the review meeting. In case a different approach is followed, the project management team takes complete responsibility.

Follow-up

Defect correction is typically followed up by managers or moderators. In case the outcome of the review meeting was unacceptable, another review meeting is scheduled and the items are reevaluated. In addition, an intensive assessment of the complete review process is performed to improve the review and software development processes.

Types of Review
Various types of review are performed, each having a different purpose. And, you can perform more than one review on a single test item, in which case, the order of reviews may vary. For example, an informal review may be performed before a technical review, or an inspection of requirement specifications may be carried out before a customer walkthrough. The most commonly-implemented review types are:

· Informal reviews

· Walkthroughs

· Technical reviews

· Inspections

Roles and Responsibilities of Reviews
Several people are involved in a review process. The given table lists the roles and responsibilities of the people involved.

Role

Responsibility

Manager

The manager of the product development team decides on the items to be reviewed, and ensures that the items and the base documents are available to the reviewing team. In addition, managers select the people who need to participate in the review meeting.

Moderator

The moderator performs all administration-related tasks pertaining to the review, plans and prepares, ensures that the review is conducted in a systematic manner and meets its objectives, gathers data related to the review, and creates a review report. In addition, whenever required, moderators stop any unnecessary discussions and mediate when there are conflicting viewpoints.

Author

The authors create the items that are under review. In case several people are involved in creating an item, one person is assigned the lead responsibility as the author. They ensure that the item to be reviewed is complete. In addition, authors contribute to the review based on their knowledge and understanding of the contents under review and perform the required rework after the review is complete.

Reviewer

The reviewers, also referred to as checkers or inspectors, check the review items after individual preparation. They adequately prepare for review meetings, and identify and note down the problems in the items under review from their perspectives. At times, reviewers are assigned specific parts of test items for review to ensure effective coverage.

Scribe

The scribes, also referred to as recorders, document review findings, such as problems, action items, decisions, and suggestions. Typically, scribes record review findings in a short and precise manner, summarizing the real meaning of the meeting.

Types of Review
Various types of review are performed, each having a different purpose. And, you can perform more than one review on a single test item, in which case, the order of reviews may vary. For example, an informal review may be performed before a technical review, or an inspection of requirement specifications may be carried out before a customer walkthrough. The most commonly-implemented review types are:

· Informal reviews

· Walkthroughs

· Technical reviews

· Inspections

Walkthroughs
Definition:
A walkthrough is a type of review in which the author presents a document step-by-step, with the objective of gathering information and establishing a common understanding of its content. When performing a walkthrough, the author guides participants through the document and his or her thought process, to establish common ground and to collect feedback. Most of the preparation for a walkthrough is done by the author; the other participants may not have a detailed understanding of the document prior to the walkthrough. This enables a large number of people, representing a broad cross-section of skills and disciplines, to participate in the review meeting and contribute their varied viewpoints. It also ensures that no major defects are overlooked.

Example:
A walkthrough of the customer and end-user requirements for an online tea-sale portal with the system-testing and user acceptance-testing teams would provide both teams with a thorough understanding of the requirements, which in turn, would enable them to perform more effective testing.

Walkthroughs
Definition:
A walkthrough is a type of review in which the author presents a document step-by-step, with the objective of gathering information and establishing a common understanding of its content. When performing a walkthrough, the author guides participants through the document and his thought process, to establish common ground and to collect feedback. Most of the preparation for a walkthrough is done by the author; the other participants may not have a detailed understanding of the document prior to the walkthrough. This enables a large number of people, representing a broad cross-section of skills and disciplines, to participate in the review meeting and contribute their varied viewpoints. It also ensures that no major defects are overlooked.

Example:
Example of Walkthrough
A walkthrough of the customer and end-user requirements for an online tea-sale portal with the system-testing and user acceptance-testing teams would provide both teams with a thorough understanding of the requirements, which in turn, would enable them to perform more effective testing.

Objectives of Walkthroughs
The main objectives of walkthroughs are:

· To present documents to stakeholders for obtaining their perspectives on the contents of the documents.

· To transfer knowledge and to get the contents of documents evaluated.

· To establish a common understanding of the documents.

· To evaluate and discuss the validity of the proposed solutions and their alternatives, establishing agreement.

Characteristics of Walkthroughs
The main characteristics of walkthroughs are:

· The meeting is led by authors.

· Scenarios and dry runs may be used to validate the content.

· The meeting may be open-ended.

· The reviewers may have a separate pre-meeting for preparation.

· The way in which the meeting is conducted may vary from quite informal to very formal.

Objectives of Walkthroughs
The main objectives of walkthroughs are:

· To present documents to stakeholders for obtaining their perspectives on the contents of documents.

· To transfer knowledge and to get the contents of documents evaluated.

· To establish a common understanding of documents.

· To evaluate and discuss the validity of proposed solutions and their alternatives, establishing agreement.

Characteristics of Walkthroughs
The main characteristics of walkthroughs are:

· The meeting is led by authors.

· Scenarios and dry runs may be used to validate the content.

· The meeting may be open-ended.

· The reviewers may have a separate pre-meeting for preparation.

· The way in which the meeting is conducted may vary from quite informal to very formal.

Technical Reviews
Definition:
A technical review is a type of review in which a peer group performs a discussion related to achieving a consensus on the technical approach to a document. These reviews are relatively less formal, when compared to inspections. In addition, technical reviews do not focus on identifying defects related to writing standards and rules. Instead, the focus of these reviews is on the technical accuracy of the document contents.

Example:
In the initial phases of a software development life cycle, all business requirement documents, high-level designs, and high-level test plans pertaining to the software product under development may be technically reviewed to detect inaccuracies early on in the development life cycle.

Technical Reviews
Definition:
A technical review is a type of review in which a peer group performs a discussion related to achieving a consensus on the technical approach to a document. The meeting is led either by a trained moderator or by a technical expert. In addition, technical reviews do not focus on identifying defects related to writing standards and rules. Instead, the focus of these reviews is on the technical accuracy of the document contents.

Example:
Example of Technical Review
In the initial phases of a software development life cycle, all business requirement documents, high-level designs, and high-level test plans pertaining to the software product under development may be technically reviewed to detect inaccuracies early on in the development life cycle.

Objectives of Technical Reviews
The main objectives of technical reviews are:

· To measure the importance of technical concepts and their alternatives for a project.

· To establish consistency in the way technical concepts are used and represented in a project.

· To ensure that technical concepts are used accurately.

· To transfer knowledge about the technical contents of the documents to the participants.

Characteristics of Technical Reviews
The main characteristics of technical reviews are:

· A documented and defined defect-detection process is followed.

· A meeting is led either by a trained moderator or by a technical expert.

· A meeting involves peers and technical experts, without participation from management.

· The reviewers may separately prepare for the meeting by examining the documents and detecting defects.

· A meeting may involve the use of other documents such as checklists, review reports, and lists of review findings.

· The way in which a meeting is conducted may vary from quite informal to very formal.

Objectives of Technical Reviews
The main objectives of technical reviews are:

· To measure the importance of technical concepts and their alternatives for a project.

· To establish consistency in the way technical concepts are used and represented in a project.

· To ensure that technical concepts are used accurately.

· To transfer knowledge about the technical contents of the documents to the participants.

Characteristics of Technical Reviews
The main characteristics of technical reviews are:

· A documented and defined defect-detection process is followed.

· A meeting is led either by a trained moderator or by a technical expert.

· A meeting involves peers and technical experts, without participation from management.

· The reviewers may separately prepare for the meeting by examining the documents and detecting defects.

· A meeting may involve the use of other documents such as checklists, review reports, and lists of review findings.

· The way in which a meeting is conducted may vary from quite informal to very formal.

Inspections
Definition:
An inspection is a type of review that involves visual examination of documents to detect defects, such as violations of development standards and nonconformance to higher-level documentation. This type of review follows the most formal review techniques and is always based on a documented procedure. After a document under review is complete, it is thoroughly checked against reference documents by reviewers before the meeting. During the meeting, all detected defects are logged and any discussions are deferred until the discussion phase; this makes the review meeting very effective.

Example:
An inspection of all business requirement documents, high-level designs, and high-level test plans pertaining to a software product under development may be performed to ensure that all the documents conform to the desired quality standards.

Inspections
Definition:
An inspection is a type of review that involves visual examination of documents to detect defects, such as violations of development standards and nonconformance to higher-level documentation. This type of review follows the most formal review techniques and is always based on a documented procedure. After a document under review is complete, it is thoroughly checked against reference documents by reviewers before the meeting. During the meeting, all detected defects are logged and any discussions are deferred until the discussion phase; this makes the review meeting very effective.

Example:
Performing Inspections
An inspection of all business requirement documents, high-level designs, and high-level test plans pertaining to a software product under development may be performed to ensure that all the documents conform to the desired quality standards.

Objectives of Inspections
The main objectives of inspections are:

· To enable authors to improve the quality of documents under inspection.

· To detect and then remove defects, as early as possible in the product development life cycle.

· To improve the quality of developed products by using high-quality documents as a base.

· To create a common understanding of the document contents among participants.

· To learn from the detected defects and gradually improve the development and testing processes, so that future occurrences of similar defects are prevented.

· To measure the quality of documents that can be used as an input for process improvements.

Characteristics of Inspections
The main characteristics of inspections are:

· A meeting is typically led by a trained moderator.

· Definite roles are used during the inspection process.

· A meeting involves peers to examine a product.

· A separate preparation phase is carried out during which reviewers examine the document and detect defects in it.

· Reviewers use standards and checklists during the individual preparation phase.

· The detected defects are documented in review reports and lists of review findings.

· In case the outcome of an inspection was unacceptable, another inspection is scheduled to reevaluate the documents.

· An analysis of the review meeting may be performed to learn from the detected defects and to improve the development process.

· Metrics may be gathered and analyzed to optimize the development process.

Objectives of Inspections
The main objectives of inspections are:

· To enable authors to improve the quality of documents under inspection.

· To detect and then remove defects, as early as possible in the product development life cycle.

· To improve the quality of developed products by using high-quality documents as a base.

· To create a common understanding of the document contents among participants.

· To learn from the detected defects and gradually improve the development and testing processes, so that future occurrences of similar defects are prevented.

· To measure the quality of documents that can be used as an input for process improvements.

Characteristics of Inspections
The main characteristics of inspections are:

· A meeting is typically led by a trained moderator.

· Definite roles are used during the inspection process.

· A meeting involves peers to examine a product.

· A separate preparation phase is carried out during which reviewers examine the document and detect defects in it.

· Reviewers use standards and checklists during the individual preparation phase.

· The detected defects are documented in review reports and lists of review findings.

· In case the outcome of an inspection was unacceptable, another inspection is scheduled to reevaluate the documents.

· An analysis of the review meeting may be performed to learn from the detected defects and to improve the development process.

· Metrics may be gathered and analyzed to optimize the development process.

Informal Reviews
Definition:
An informal review is a type of review that is not based on a formal documented procedure. These reviews are typically the most common types of reviews, and are performed several times during the early stages in the life cycle of a document. Informal reviews more or less follow the general review process in a less complicated manner. Two or more people may conduct an informal review, where a peer of the author may be asked to review a document.

Example:
At the time of development of an online tea-sale portal, its developers may ask other developers to check the accuracy of their code, so that any errors can be rectified before the pages in the website are released for formal testing.

Informal Reviews
Definition:
An informal review is a type of review that is not based on a formal documented procedure. These reviews are typically the most common types of reviews, and are performed several times during the early stages in the life cycle of a document. Informal reviews more or less follow the general review process in a less complicated manner. Two or more people may conduct an informal review, where a peer of the author may be asked to review a document.

Example:
Performing Informal Reviews
At the time of development of an online tea-sale portal, its developers may ask other developers to check the accuracy of their code, so that any errors can be rectified before the pages in the website are released for formal testing.

Objectives of Informal Reviews
The main objectives of informal reviews are:

· To achieve the benefits of a review in an inexpensive way, without much effort.

· To help authors in developing products containing fewer defects.

· To improve the quality of documents by detecting as many defects as possible.

Characteristics of Informal Reviews
The main characteristics of informal reviews are:

· All the steps in the formal review process are not followed.

· A meeting may involve peers or technical leads to review documents, designs, or code.

· A meeting may not be documented.

· The effectiveness of a review may vary, depending on the reviewer.

Success Factors for Reviews
When using reviews to improve the quality of documents and code, you need to consider various factors that are crucial for the success of reviews.

· Formulate review findings, such as unclear points and deviations, in a neutral and objective way.

· Make the authors feel positive about the review experience.

· Select appropriate review types, based on the type and level of the document under test and the knowledge of the participants.

· Formulate clear predefined objectives for each review.

· Use checklists and guidelines to increase review effectiveness.

· Ensure that all participants are trained to perform their respective roles in a review meeting.

· Ensure that sufficient resources are planned for document reviews in the software development process.

· Emphasize learning and continuous process improvement.

Objectives of Informal Reviews
The main objectives of informal reviews are:

· To achieve the benefits of a review in an inexpensive way, without much effort.

· To help authors in developing products containing fewer defects.

· To improve the quality of documents by detecting as many defects as possible.

Characteristics of Informal Reviews
The main characteristics of informal reviews are:

· All steps in the formal review process need not be followed.

· A meeting may involve peers or technical leads to review documents, designs, or code.

· A meeting may not be documented.

· The effectiveness of a review may vary, depending on the reviewer.

Success Factors for Reviews
When using reviews to improve the quality of documents and code, you need to consider various factors that are crucial for the success of reviews.

· Formulate review findings, such as unclear points and deviations, in a neutral and objective way.

· Make the authors feel positive about the review experience.

· Select appropriate review types, based on the type and level of the document under test and the knowledge of the participants.

· Formulate clear, predefined objectives for each review.

· Use checklists and guidelines to increase review effectiveness.

· Ensure that all participants are trained to perform their respective roles in a review meeting.

· Ensure that sufficient resources are planned for document reviews in the software development process.

· Emphasize learning and continuous process improvement.

Static Analysis
Definition:
Static analysis is a type of testing which includes activities related to the analysis of test items, such as requirements specifications and code, without having to execute them. The objective of both reviews and static analysis is the same: both are used to detect defects in documents or code. However, in static analysis, tools are used to perform the analysis. Even a compiler is considered a static tool because it carries out a static analysis of the program under test by ensuring that the correct syntax of the programming language is used.

Typically, static analysis is performed before reviews. Static analysis also enables you to derive measurements for evaluating and proving the quality of an item under test. However, all defects cannot be detected using static analysis because some defects can be noticed only when a piece of code is executed.

The documents, such as technical requirements, software architecture, and software design, on which you want to perform static analysis need to follow specific structures, so that they can be examined by a tool. Static analysis tools are typically used by developers, before or during component and integration testing, to verify that the programming conventions, guidelines, and other development standards are followed. These tools enable you to analyze coding standards, code metrics, and code structure.

Example:
When class diagrams are created using Unified Modeling Language (UML), the outputs can be generated in HyperText Markup Language (HTML) or Extensible Markup Language (XML). This output can be tested by using static analysis tools.

Static Analysis
Definition:
Static analysis is a type of testing which includes activities related to the analysis of test items, such as requirements specifications and code, without having to execute them. The objective of both reviews and static analysis is the same: both are used to detect defects in documents or code. However, in static analysis, tools are used to perform the analysis. Even a compiler is considered a static tool because it carries out a static analysis of the program under test by ensuring that the correct syntax of the programming language is used.

Typically, static analysis is performed before reviews. Static analysis also enables you to derive measurements for evaluating and proving the quality of an item under test. However, all defects cannot be detected using static analysis because some defects can be noticed only when a piece of code is executed.

Example:
Example of Static Analysis
When class diagrams are created using Unified Modeling Language (UML), the outputs can be generated in HyperText Markup Language (HTML) or Extensible Markup Language (XML). This output can be tested by using static analysis tools.

Performing Static Analysis
The documents, such as technical requirements, software architecture, and software design, on which you want to perform static analysis need to follow specific structures, so that they can be examined by a tool. Static analysis tools are typically used by developers, before or during component and integration testing, to verify that the programming conventions, guidelines, and other development standards are followed. These tools enable you to analyze coding standards, code metrics, and code structure.

The Benefits of Static Analysis
The typical benefits of static analysis are:

· Early detection of defects prior to test execution.

· Early warning about suspicious aspects of the code or design, by the calculation of metrics.

· Identification of defects that are not easily found by executing the code.

· Detection of dependencies and inconsistencies in software designs.

· Improved maintainability of code and design.

· Prevention of defects by implementing lessons learned during development.

Defects Detected in Static Analysis
Typical defects discovered by static analysis tools include:

· References to variables with undefined values.

· Inconsistent interfaces between systems and components.

· Variables that are only declared, but never used.

· Unreachable parts of code.

· Violations in programming standards.

· Security vulnerabilities.

· Syntax violations of code and software design.

Coding Standards
Static analysis tools ensure that the code under test adheres to the defined or adopted coding standards, which typically consist of a set of programming rules, naming conventions, and code formatting specifications. Coding standards are defined before starting the coding phase in the development life cycle of a product. Examples of coding standards include always check the limits of arrays before storing data into them, all class names should begin with uppercase C, and indent code by four spaces.
It is recommended that coding standards be adopted from existing projects; this enables the development team to save on effort and time. Another advantage is that if a well-known coding standard is adopted and a testing tool for that standard is available, you can use the tool for analyzing program code. Another approach to analyzing program code is to purchase a static code analyzer, and then specify coding standards according to the rules in it.

Code Metrics
Static analysis tools help analyze the structural attributes of code, such as the frequency of comments, levels of nesting, and the number of lines of code in programs. This information enables developers and testers to check that a program is becoming larger, more complex, and more difficult to understand and maintain. Static analysis tools provide different code metrics, which in turn provide different types of information that can be used to design the code better.

Cyclomatic Complexity
Cyclomatic complexity is a code metric provided by static analysis tools that specifies the number of independent paths through a program; this measurement enables you to identify complex and high-risk areas of code. Cyclomatic complexity enables you to identify the amount of testing required to almost avoid defects.

Code Structure
Static analysis tools provide information about the structure of code. Such information enables you to determine the effort required to develop that code, to understand the code when modifying it, or to test the code by using specific tools or techniques. Information that such tools generally provide includes:

· Control flow structure: It specifies the sequence in which instructions are executed through a component or system. This information enables you to determine the iterations, loops, nested levels, and cyclomatic complexity in the design of a program. In addition, control flow analysis enables you to identify unreachable code.

· Data flow structure: It specifies the sequence in which data items are accessed or modified by code. In situations where the changes applied to data items are quite complex, data flow analysis enables you to determine the way data items are modified by the code. This analysis in turn enables the identification of defects while referencing variables.

Code Structure
Static analysis tools provide information about the structure of code. They also provide information on control flow structure that specifies the sequence in which instructions are executed through a component or system. Using them you can determine the iterations, loops, nested levels, and cyclomatic complexity in the design of a program. Static analysis tools also provide information on the data flow structure by specifying the sequence in which data items are accessed or modified by code. This analysis in turn enables the identification of defects while referencing variables.

The Benefits of Static Analysis
The typical benefits of static analysis are:

· Early detection of defects prior to test execution.

· Early warning about suspicious aspects of code or design, by using metrics.

· Identification of defects that are not easily found by merely executing code.

· Detection of dependencies and inconsistencies in software designs.

· Improved maintainability of code and design.

· Prevention of defects by implementing lessons learned during development.

Defects Detected in Static Analysis
Typical defects discovered by static analysis tools include:

· References to variables with undefined values.

· Inconsistent interfaces between systems and components.

· Variables that are only declared, but never used.

· Unreachable parts of code.

· Violations in programming standards.

· Security vulnerabilities.

· Syntax violations of code and software design.

Activity 4-4

Discussing Static Testing
Scenario:
Before you perform the activities related to manual checking and static analysis of test items, you may want to check your understanding on static testing.

1.

True or False? The objective of all types of reviews is to solve problems in the design.
a)
True

b)
False
2.

Identify the tasks performed by a moderator during a review meeting.
a)
Deciding on the items to be reviewed.


b)
Ensuring that the review is conducted in a systematic manner.

c)
Preventing interruptions.
d)
Commenting on the design documentation.
3.

Which of the following is an example of static testing?
a)
Portability testing
b)
Reliability testing


c)
Technical review

d)
Walkthrough
4.

The sequence in which data items are accessed or modified by code is:

a)
Data flow
b)
Internal flow
c)
Control flow
5.

Identify the benefits of static analysis.


a)
Early detection of defects.


b)
Early warning about suspicious aspects of code or design.

c)
Improved maintainability of code and design.
d)
Observation of the input/output behavior of the item under test.
6.

During __________, the author presents a document step-by-step, with the objective of gathering information and establishing a common understanding of its content.

a)
Inspections
b)
Walkthroughs
c)
Technical reviews
7.

During __________, the author presents a document step-by-step, with the objective of gathering information and establishing a common understanding of its content.
a)
Reviews
b)
Inspections

c)
Walkthroughs
d)
Technical reviews
8.

__________ involve visual examination of documents to detect defects, such as violations of development standards and nonconformance to higher-level documentation.
a)
Reviews

b)
Inspections
c)
Walkthroughs
d)
Technical reviews
9.

During __________, a peer group performs a discussion related to achieving a consensus on the technical approach to a document.
a)
Reviews
b)
Inspections
c)
Walkthroughs

d)
Technical reviews
10.

In a formal review meeting, the following individuals do not make comments on the item under test.


a)
Scribe
b)
Author

c)
Moderator
d)
Reviewer
11.

During __________, reviewers check every line of a document against each item in reference documents.
a)
Reviews

b)
Inspections
c)
Walkthroughs
d)
Technical reviews
Topic D

Understand Dynamic Testing

You learned about static testing. Another basis for determining the test type for items is to find out whether testing would include activities related to executing the test items on a computer. In this topic, you will get to know more about dynamic testing.

Dynamic testing enables you to determine whether the code of a software product and its components work correctly, use specific input values, and generate the expected output. This test type enables you to detect defects and determine the quality attributes of the code written to create a software product. Dynamic testing, followed by related debugging, instills confidence in customers and the development organization that the code is functionally and computationally correct.

Dynamic Testing
Definition:
Dynamic testing is a type of testing that involves executing the software of a system or its components on a computer. You can perform this type of testing on an item only if the item is executable. When dynamic testing is performed at the component and integration levels, typically, the test items cannot be executed independently; therefore, they are provided with an environment containing all elements, such as hardware, software, stubs, drivers, and simulators, needed to conduct the tests.

The generic steps followed in the fundamental test process are executed when performing dynamic testing. You typically start dynamic testing for a project by analyzing the documents that form the test bases for determining the features that need to be tested. In addition, you determine test objectives that map to the requirements from the software product, and the necessary conditions for executing dynamic tests. You also determine how the developed test cases relate to individual requirements, so that the coverage of the requirements by the tests can be analyzed. Thereafter, test cases are prioritized, grouped into sequences, and documented into test procedures. The test cases are then executed according to the test schedule.

Dynamic testing is performed by either using black-box or white-box testing techniques. These are referred to as test case design techniques because they enable you to identify their respective test cases.

Example:
Consider an example of a component to find the larger of two numbers. As in dynamic testing, code is tested by executing it, you provide input to the component and analyze the output to see if the code is working as intended. Consider the given code that accepts two numbers as input and displays the larger number:
int x,y;

read x,y;

if(x>y)

print x;

When performing dynamic testing on this code, you provide various input values and then analyze the output to see that the code works as intended. You may also decide to check the internal working of the code to analyze the internal processing of the code.

Dynamic Testing
Definition:
Dynamic testing is a type of testing that involves executing the software of a system or its components on a computer. You can perform this type of testing on an item only if the item is executable. When dynamic testing is performed at the component and integration levels, the test items typically cannot be executed independently; therefore, they are provided with an environment containing all elements, such as hardware, software, stubs, drivers, and simulators, needed to conduct the tests.

The generic steps followed in the fundamental test process are executed when performing dynamic testing. You typically start dynamic testing for a project by analyzing the documents that form the test bases for determining the features that need to be tested. In addition, you determine test objectives that map to the requirements from the software product, and the necessary conditions for executing dynamic tests. You also determine how the developed test cases relate to individual requirements, so that the coverage of the requirements by the tests can be analyzed. Thereafter, test cases are prioritized, grouped into sequences, and documented into test procedures. The test cases are then executed according to the test schedule.

Example:
Example of Dynamic Testing
Consider an example of a component to find the larger of two numbers. As in dynamic testing, code is tested by executing it; you provide input to the component and analyze the output to see if the code is working as intended. Consider the given code that accepts two numbers as input and displays the larger number:
int x,y;

read x,y;

if(x>y)

print x;

When performing dynamic testing on this code, you provide various input values and then analyze the output to see that the code works as intended. You may also decide to check the internal working of the code to analyze the internal processing of the code.

Black-Box Testing
Definition:
Black-box testing is a type of testing that includes activities related to testing functional or nonfunctional attributes of a system or its components, without any references to the internal structure of the system or to the components. When performing black-box testing, the item under test is viewed as a black box, and test cases for the item are created from the requirements and design specifications of the item. When executing test cases, you observe the behavior of the item from the outside, and you do not have control over the functionality of the item, except for providing appropriate test data.

Black-box testing techniques are also referred to as functional or behavioral testing techniques because they involve observing the input/output behavior of the object under test; the entire focus of testing is on the functionality of the test item.

This testing type is most commonly used at system and acceptance testing levels; however, it may also be used to check the functionality of discrete software components, subsystems, and systems.

All test cases that are developed before code is written are essentially black-box driven.

Example:
Suppose you need to test a component that accepts two numbers as input and displays the larger number. You can test the component by providing two numbers and then determining if the output is correct. Suppose you provide 7 and 2 as input and receive 7 as the output, which is the correct answer, you as a tester can designate the test passed because you are not testing how the component is calculating the result. In addition, you can also test the component by reversing the order of the two numbers, that is providing 2 and 7 as the input. In that case, the component should not display any result. Moreover, to perform more extensive testing, you can test the component with other combinations of numbers, including 0. Therefore, to identify the maximum number of defects using black-box testing, it is recommended that you test the application with the maximum possible number of inputs.

Black-Box Testing
Definition:
Black-box testing is a type of testing that includes activities related to testing functional or nonfunctional attributes of a system or its components, without any references to the internal structure of the system or to the components. When performing black-box testing, the item under test is viewed as a black box, and test cases for the item are created from the requirements and design specifications of the item. When executing test cases, you observe the behavior of the item from the outside, and you do not have control over the functionality of the item, except for providing appropriate test data.

Example:
Understanding Black-box Technique
Black-box testing techniques are also referred to as functional or behavioral testing techniques because they involve observing the input/output behavior of the object under test; the entire focus of testing is on the functionality of the test item. This testing type is most commonly used at system and acceptance testing levels; however, it may also be used to check the functionality of discrete software components, subsystems, and systems. All test cases that are developed before code is written are essentially black-box driven.

Example of Black-box Testing
Suppose you need to test a component that accepts two numbers as input and displays the larger number. You can test the component by providing two numbers and then determining if the output is correct. Suppose you provide 7 and 2 as input and receive 7 as the output, which is the correct answer, you as a tester can designate the test passed because you are not testing how is the component calculating the result. In addition, you can also test the component by reversing the order of the two numbers, that is providing 2 and 7 as the input. In that case, the component should not display any result. Moreover, to perform a more extensive testing, you can test the component with other combinations of numbers, including 0. Therefore, to identify the maximum number of defects using black-box testing, it is recommended that you test the application with the maximum possible number of inputs.

White-Box Testing
Definition:
White-box testing, also referred to as code-based testing, glass-box testing, logic-coverage testing, logic-driven testing, or structure-based testing, is a type of testing that includes activities related to analyzing the internal structure of a system or its components. You need to understand and use the source code of a program for performing white-box testing. When executing test cases for performing this type of testing, you can analyze both the internal processing and the output of the item under test. If required, you can also directly control the internal functionality of the item. Test cases for white-box testing are designed to deal with the code structure of the item under test.

White-box testing is also referred to as structural testing because it involves examining the structure, including the component hierarchy, flow control, and data flow, of the item under test.

And, this testing type can be applied at the component and integration testing levels.

Example:

White-Box Testing
Definition:
White-box testing is a type of testing that includes activities related to analyzing the internal structure of a system or its components. You need to understand and use the source code of a program for performing white-box testing. When executing test cases for performing this type of testing, you can analyze both the internal processing and the output of the item under test. If required, you can also directly control the internal functionality of the item. Test cases for white-box testing are designed to deal with the code structure of the item under test.

Example:
Understanding White-box Testing
White box testing is also referred to as code-based testing, glass-box testing, logic-coverage testing, logic-driven testing, or structure-based testing. It is also referred to as structural testing because it involves examining the structure, including the component hierarchy, flow control, and data flow, of the item under test.

And, this testing type can be applied at the component and integration testing levels.

Activity 4-5

Discussing Dynamic Testing
Scenario:
Before you perform the activities related to executing the test items on a computer, you may want to check your understanding on dynamic testing.

1.

Black-box testing is a type of:

a)
Functional testing
b)
Structural testing
c)
Static testing
d)
Robustness testing
2.

True or False? A developer may perform white-box testing during coding.

a)
True
b)
False
Topic E

Understand Other Test Types

In addition to the test types covered in the previous topics, several other types also exist. In this topic, you will learn about some more testing types that do not fall under the categories discussed in previous topics.

Consider a scenario where the components of a software product have already been tested. However, you now need to retest the components because the developers modified source code substantially while debugging. As part of retesting, you want to ensure that no new defects have been introduced because of the changes. To achieve this, you perform regression testing, which does not fall under any of the major test categories. An understanding of other test types, besides the ones that come under major test categories, enables you to identify and apply the appropriate test types in similar work situations.

Smoke Testing
Definition:
Smoke testing, also referred to as sanity or confidence testing, is a type of testing that includes activities related to executing a subset of all of the test cases that cover the main functionality of a system or its components to determine that the most critical functions of the system or its components work well. The objective of smoke testing is to verify the minimum reliability of the item under test.

Unlike other test types, the results of a smoke test are not assessed in detail. In addition, actual test results are not compared with expected results, which makes this test very easy and inexpensive to run. Typically, you perform smoke tests when a decision regarding the maturity of a test item to proceed with further thorough testing needs to be made.

Example:
During the development of an online tea-sale portal, whenever a new build of the website is released for system testing, the system testing team performs a smoke test to confirm if the website is ready to be accepted for starting formal testing. In case the website does not meet the criteria of smoke testing, it is rejected and the developers work on creating a new refined build, which is again submitted for smoke testing.

Smoke Testing
Definition:
Smoke testing, also referred to as sanity or confidence testing, is a type of testing that includes activities related to executing a subset of all of the test cases that cover the main functionality of a system or its components to determine that the most critical functions of the system or its components work well. The objective of smoke testing is to verify the minimum reliability of the item under test. Unlike other test types, actual test results are not compared with expected results, which makes this test very easy and inexpensive to run. Typically, you perform smoke tests when a decision regarding the maturity of a test item to proceed with further thorough testing needs to be made.

Example:
Example of Smoke Testing
During the development of an online tea-sale portal, whenever a new build of the website is released for system testing, the system testing team performs a smoke test to confirm if the website is ready to be accepted for starting formal testing. In case the website does not meet the criteria of smoke testing, it is rejected and the developers work on creating a new refined build, which is again submitted for smoke testing.

Retesting
Definition:
Retesting, also referred to as confirmation testing, is a type of testing that includes activities related to executing test cases that failed the last time they were run, to validate that corrective actions have been successfully implemented. When you execute a test case and it fails, you report a defect, and then a new version of the software product minus the defect is released to be tested again. When performing retesting, you need to ensure that test cases are executed in exactly the same manner as they were the first time, that is, by using the same test environment and data.

Example:
During the development of an online tea-sale portal, all defects raised in the previous cycle of system testing are retested in the next cycle to confirm that they have been properly fixed and closed.

Retesting
Definition:
Retesting, also referred to as confirmation testing, is a type of testing that includes activities related to executing test cases that failed the last time they were run, to validate that corrective actions have been successfully implemented. When you execute a test case and it fails, you report a defect, and then a new version of the software product minus the defect is released to be tested again. When performing retesting, you need to ensure that test cases are executed in exactly the same manner as they were the first time, that is, by using the same test environment and data.

Example:
Example of Retesting
During the development of an online tea-sale portal, all defects raised in the previous cycle of system testing are retested in the next cycle to confirm that they have been properly fixed and closed.

Regression Testing
Definition:
Regression testing is a type of testing that includes activities related to testing a previously tested program. It is typically done after the bugs identified in a software product are fixed. The objective of this testing is to ensure that no new defects have been introduced or detected in unchanged areas of the software, as a result of making the changes. Regression testing is performed only when a software product or its environment has changed. As defects resulting from making changes to software typically arise as accidental side effects of modifications, this type of testing may be performed at all test levels.

When performing regression testing, existing test cases are implemented to retest the added, changed, or fixed parts of a software product. As you may need to run the same regression test cases several times, it is important that the test cases be well documented and reusable.

Example:
During the acceptance testing stage of an online tea-sale portal, the customer suggests changes to the feedback module. As the changes in the feedback module may affect other areas, such as the login, logout, catalog, and online payment modules, the testing team may perform regression testing on these modules.

Regression Testing
Definition:
Regression testing is a type of testing that includes activities related to testing a previously tested program. It is typically done after the bugs identified in a software product are fixed. The objective of this testing is to ensure that no new defects have been introduced or detected in unchanged areas of the software, as a result of making the changes. Regression testing is performed only when a software product or its environment has changed. As defects resulting from making changes to software typically arise as accidental side effects of modifications, this type of testing may be performed at all test levels.

Example:
Performing Regression Testing
When performing regression testing, existing test cases are implemented to retest the added, changed, or fixed parts of a software product. As you may need to run the same regression test cases several times, it is important that the test cases be well documented and reusable.

Example of Regression Testing
During the acceptance testing stage of an online tea-sale portal, the customer suggests changes to the feedback module. As the changes in the feedback module may affect other areas, such as the login, logout, catalog, and online payment modules, the testing team may perform regression testing on these modules.

Degrees of Regression Testing
Before performing regression testing, you need to determine the extent to which testing needs to be done. You can:

· Re-execute all tests in which defects were detected in the previous round of testing, that have been fixed in the current software release.

· Test all parts of the system and components that have been fixed after the previous release.

· Test all parts of the system and components that have been integrated after the previous release.

· Test the complete software product.

At times, re-executing only the tests in which defects were detected in the previous round of testing, or testing only the parts of the system and components that have either been fixed or integrated after the previous release may not be enough. This is because even minor changes in a component of a system may create side effects in other parts of the system.

Complete Regression Tests
When performing regression testing, it is recommended that all existing test cases be repeated to ensure that all modified parts of the software are virtually defect-free. A complete regression test should also be performed in case the system environment has changed because a changed environment may have an impact on all parts of a system. However, a complete regression test may be extremely time-consuming and expensive. Therefore, organizations select specific test cases, which help them balance risks and costs.

Degrees of Regression Testing
Before performing regression testing, you need to determine the extent to which testing needs to be done. You can:

· Re-execute all tests in which defects were detected in the previous round of testing, that have been fixed in the current software release.

· Test all parts of the system and components that have been fixed after the previous release.

· Test all parts of the system and components that have been integrated after the previous release.

· Test the complete software product.

At times, re-executing only the tests in which defects were detected in the previous round of testing, or testing only the parts of the system and components that have either been fixed or integrated after the previous release may not be enough. This is because even minor changes in a component of a system may create side effects in other parts of the system.

Complete Regression Tests
When performing regression testing, it is recommended that all existing test cases be repeated to ensure that all modified parts of the software are virtually defect-free. A complete regression test should also be performed in case the system environment has changed because a changed environment may have an impact on all parts of a system. However, a complete regression test may be extremely time-consuming and expensive. Therefore, organizations select specific test cases, which help them balance risks and costs.

Maintenance Testing
Definition:
Maintenance testing is a type of testing that includes activities related to examining the changes made to an operational system or the impact of a changed environment on an operational system. After being installed, a software product is used for many years, and is modified, updated, and extended several times to correct defects, to improve performance or other features, or to adapt the product to a changed environment. Maintenance testing is performed in the maintenance phase of a typical software development life cycle, that is, when a software product is modified after delivery.

Maintenance testing typically begins after a test leader receives an application for change in a software product. A test plan is created based on this application, and test cases are developed or adapted based on new or modified specifications. After the testing team receives a new version of the software product, the developed or adapted test cases are executed, followed by regression tests. Post testing, all objects created and used during the testing are saved for future use.

Example:
Since last 15 years, an organization uses a specific software product for payroll processing. The software is now migrated from the original platform to a new platform. To ensure that the product functions properly in the new environment, maintenance testing is performed.

Maintenance Testing
Definition:
Maintenance testing is a type of testing that includes activities related to examining the changes made to an operational system or the impact of a changed environment on an operational system. After being installed, a software product is used for many years, and is modified, updated, and extended several times to correct defects, to improve performance or other features, or to adapt the product to a changed environment. Maintenance testing is performed in the maintenance phase of a typical software development life cycle, that is, when a software product is modified after delivery.

Example:
Understanding Maintenance Testing
Maintenance testing typically begins after a test leader receives an application for change in a software product. A test plan is created based on this application, and test cases are developed or adapted based on new or modified specifications. After the testing team receives a new version of the software product, the developed or adapted test cases are executed, followed by regression tests. Post testing, all objects created and used during the testing are saved for future use.

Example of Maintenance Testing
Since last 15 years, an organization uses a specific software product for payroll processing. The software is now migrated from the original platform to a new platform. To ensure that the product functions properly in the new environment, maintenance testing is performed.

Typical Problems Detected During Maintenance
After deployment, almost all software systems require some modifications and enhancements. The problems detected during maintenance are usually design faults that already exist in the original version of a software product. Typical problems that are detected in the maintenance phase of most software systems are:

· The new environment in which the system is supposed to run was not predictable at the time of design, and therefore not planned.

· The customer wants new functionality to be added.

· New modules are required for handling special situations that arise occasionally.

· Appropriate fixes need to be done for addressing system crashes that happen occasionally.

Typical Problems Detected During Maintenance
After deployment, almost all software systems require some modifications and enhancements. The problems detected during maintenance are usually design faults that already exist in the original version of a software product. Typical problems that are detected in the maintenance phase of most software systems are:

· The new environment in which the system is supposed to run was not predictable at the time of design, and therefore not planned.

· The customer wants new functionality to be added.

· New modules are required for handling special situations that arise occasionally.

· Appropriate fixes need to be done for addressing system crashes that happen occasionally.

Triggers for Maintenance Testing
When performing testing after a software maintenance task, all parts of the software product that have been either added or modified are tested; regression testing is performed on the remaining parts of the system. In case a software product is not modified but the operating environment for the product has changed, maintenance testing is performed. Maintenance testing is also performed when a system is scheduled for retirement. In such cases, maintenance tests include testing for data archiving and data migration into the future system.

Operational Testing
Operational testing is a type of testing that includes activities related to evaluating a system or its components in their operational environment. When performing maintenance testing in cases where a software product is not modified but the operating environment for the product has changed, operational testing on the new environment is performed.

Impact Analysis
Impact analysis is the assessment of changes required to be made to the different layers of development documentation, test documentation, and software components, in order to implement a given change to the original requirements. During impact analysis, the parts of a software product that may have been accidentally affected are identified for thorough regression testing.

Comparison Between Developmental and Maintenance Testing
The same test process steps are applied to testing for new developments and for maintenance purposes. Based on the size and risks involved, testing at different levels, such as component, integration, system, and acceptance, is performed.

The main difference between testing for new developments and testing for maintenance purposes lies in the focus with which the two types of testing are carried out. Differences typically exist in areas such as determining the test basis. Typically, when performing maintenance testing, specifications may have been missed out on, or objects created and used during testing are not saved for future use. In such cases, while performing tests, you also need to focus on searching for the missing specifications or objects. In addition, while creating new test cases for running maintenance tests, it is best to create reusable tests because the same tests may also be required to perform future maintenance tasks.

Another point of difference between testing for new developments and testing for maintenance purposes lies in the way in which these two types are organized. New developments and their corresponding tests are carried out as part of a project. On the other hand, maintenance tests are performed as a separate activity. This difference typically results in lack of resources for maintenance testing and competition from other activities.

Comparison Between Developmental and Maintenance Testing
The same test process steps are applied to testing for new developments and for maintenance purposes. The main difference between testing for new developments and testing for maintenance purposes lies in the focus with which the two types of testing are carried out. Typically, when performing maintenance testing, specifications may have been missed out on, or objects created and used during testing are not saved for future use. In such cases, while performing tests, you also need to focus on searching for the missing specifications or objects. In addition, while creating new test cases for running maintenance tests, it is best to create reusable tests because the same tests may also be required to perform future maintenance tasks.

Another point of difference between testing for new developments and testing for maintenance purposes lies in the way in which these two types are organized. New developments and their corresponding tests are carried out as part of a project. On the other hand, maintenance tests are performed as a separate activity. This difference typically results in lack of resources for maintenance testing and competition from other activities.

Robustness Testing
Definition:
Robustness testing, also known as negative testing, is a type of testing that includes activities related to testing the degree to which a system or its components can function correctly if invalid inputs or stressful environmental conditions are used, such as operating errors and hardware failure. This testing type is similar to functional testing, with a difference that function calls and data used for testing are either incorrect or special cases. The typical reaction of a system or its components to robustness tests is appropriate exception handling.

Example:
During the development of an online tea-sale portal, the website is tested with more than 100 users simultaneously accessing the website, where some users perform online payment, some provide feedback, and some others simply log in and log out. Such a test enables the testing team to determine the degree of robustness of the website.

Robustness Testing
Definition:
Robustness testing, also known as negative testing, is a type of testing that includes activities related to testing the degree to which a system or its components can function correctly if invalid inputs or stressful environmental conditions are used, such as operating errors and hardware failure. This testing type is similar to functional testing, with a difference that function calls and data used for testing are either incorrect or special cases. The typical reaction of a system or its components to robustness tests is appropriate exception handling.

Example:
Example of Robustness Testing
During the development of an online tea-sale portal, the website is tested with more than 100 users simultaneously accessing the website, where some users perform online payment, some provide feedback, and some others simply log in and log out. Such a test enables the testing team to determine the degree of robustness of the website.

Activity 4-6

Discussing Other Test Types
Scenario:
Before you perform the activities related to other testing types that do not fall under the categories discussed in previous activities, you may want to check your understanding on other testing types.

1.

To reduce the time required for regression testing, you can:

a)
Select appropriate test cases.
b)
Quickly repeat all existing test cases.
c)
Ensure that the system environment never changes.
d)
Test only the parts that have changed since the previous release.
2.

Maintenance testing for a system scheduled for retirement may include:
a)
Testing the operational environment of the system.


b)
Testing for data archiving.

c)
Testing for data migration into the future system.
d)
Assessing the changes required in layers of documentation and software components.
3.

What is the purpose of regression testing?
a)
To ensure that corrective actions are successful.
b)
To motivate developers to perform better component testing.

c)
To ensure that no new defects are introduced because of modifications.
Lesson 4 Follow-up
In this lesson, you learned about different test types. An understanding of various test types enables you to select the appropriate test types for fulfilling specific test objectives. In addition, it enables you to easily make and communicate decisions against each test objective.

1.

What are the different types of tests performed in your organization? At which test level are they implemented?

Answers will vary, but may include:

White-box testing. Implemented at the component test level.

Black-box testing. Implemented at component, integration, and system test levels.

Reviews. Implemented at component and system test levels.

Maintenance testing. Implemented after a software product is released to a customer.

Sanity testing. Implemented at component, integration, and system levels.

2.

After going through the test types covered in this lesson, do you think you need to modify the kinds of tests that you typically perform to meet specific test objectives? Why?

Answers will vary, but may include:

Yes, for almost all projects, various types of static testing can be performed for test documents, so that defects are detected early.

Smoke testing can also be performed to confirm if a software product is ready to be accepted for starting formal testing. This will save a lot of time and effort.

Lesson 5
Planning and Estimating Tests
Lesson Objectives:

In this lesson, you will plan and estimate tests.

You will:

· Explain test planning.

· Identify risks in the testing process.

· Identify the approach to testing.

· Explain test scheduling.

· Create a test plan.

Introduction

You identified various types of testing. You may now want to apply your testing knowledge to real-world situations and the first step in a typical test process is to plan for testing. In this lesson, you will create a test plan document summarizing planning and testing estimations.

Before testing a software application, you should first document the plan for tasks and estimation of required effort. The test plan ensures that the entire testing team understands the goals and objectives of the client and of the project, that is, the mission of testing. In addition, the test plan enables you to specify the purpose of testing, testing approach, plans for tests, testing activities, test policies, and test strategies. Simply put, test planning and estimation provides a detailed understanding of the workflow for a testing project.

Topic A

Understand Test Planning

In order to create a plan for the schedule, approach, and efforts required for testing activities, you first need to understand test planning and its importance. In this topic, you will identify importance and objectives of test planning.

Test planning is an essential step to successfully execute testing tasks with desired results. Consider a scenario where you want to test the functionality of a login window. You can first identify the most effective approach to testing that will cover all possible cases of testing. Then you can estimate the effort and create a schedule for testing activities. Planning for a task before executing it is necessary for clear understanding of what you are doing, why you are doing it, and what to achieve.

Test Management
Test management is the process of organizing and managing testing activities. It includes planning and estimating the effort and schedule of testing. It also involves monitoring progress of planned test activities and reporting on the summary of testing activities by creating reports. Based on monitoring and results of test activities, you can control the testing process by re-prioritizing or changing the test schedule. Test management activities are generally carried out by the test manager or test leader.

Figure 5-1: Test management.

Test Management
Test management is the process of organizing and managing testing activities. It includes planning and estimating the effort and schedule of testing. It also involves monitoring progress of planned test activities and reporting the summary of testing activities by creating reports. Based on monitoring and results of test activities, you can control the testing process by re-prioritizing or changing the test schedule. Test management activities are generally carried out by the test manager or test leader.

Figure 5-2: Test management.

Test Planning
Test planning is an activity that involves documenting the approach to testing, effort required for the testing process, and risks involved in testing. Test planning is a part of test management and depends on factors such as test policy of the organization, the scope of testing, test objectives, and availability of resources. The document you get as a result of test planning activity is called a test plan. As the planning progresses, more detail is added to the test plan.

Test planning should start as early as possible in the SDLC and should be revisited after completing each critical milestone in a project. Starting test planning early in the life cycle enables you to deal with risks that require contingency planning. You can change the test strategy, resource allocation, and responsibilities, and reset the priorities to mitigate risks. Changing requirements and progress of the project result in the test plan being updated subsequently.

Test Planning
Test planning is an activity that involves documenting the approach to testing, effort required for the testing process, and risks involved in testing. Test planning is a part of test management and depends on factors such as test policy of the organization, the scope of testing, test objectives, and availability of resources. The document you get as a result of test planning activity is called a test plan. As the planning progresses, more detail is added to the test plan.

Test planning should start as early as possible in the SDLC and is revisited after completing each critical milestone in a project. Starting test planning early in the life cycle enables you to deal with risks that require contingency planning. You can change the test strategy, resource allocation, and responsibilities, and reset the priorities to mitigate risks. Changing requirements and progress of the project result in the test plan being updated subsequently.

Objectives of Test Planning
The objective of test planning is to ensure smooth execution of test activities. Test planning helps in:

· Dealing with challenges that may appear while executing test activities. If you do not focus on critical requirements, any failure or delay at the last stage of the SDLC will result in serious repercussions.

· Communication between members involved in a project such as the development team, testing team, managers, and stakeholders. Communication allows you to decide on the scope of testing, test objectives, critical requirements to test, resource considerations and constraints, and prioritization of testing activities.

· Changing the approach and schedule of testing at any stage of the SDLC. Documenting the outcome of the test planning process helps in measuring test activities to keep them aligned with project requirements.

Objectives of Test Planning
The objective of test planning is to ensure smooth execution of test activities within planned budget and schedule. Test planning helps in:

· Dealing with challenges that may appear while executing test activities. If you do not focus on critical requirements of the software, any failure or delay at the last stage of the SDLC will result in serious repercussions.

· Communication between members involved in a project such as the development team, testing team, managers, and stakeholders. Communication allows you to brainstorm and decide on the scope of testing, test objectives, risks related to the testing phase and their mitigation plan, critical requirements to test, resource considerations and constraints, and prioritization of testing activities.

· Changing the approach and schedule of testing at any stage of the SDLC to deal with a changed set of requirements, environmental factors, and customer priorities. Documenting the outcome of the test planning process helps in measuring test activities to keep them aligned with project requirements.

Test Planning Activities
Test planning activities are generally carried out by test managers in collaboration with other team members and stakeholders. These activities are aligned with the mission of the testing team and test policy of the organization. Some of the test planning activities are:

· Defining the approach to testing. It includes deciding on the overall approach to completing the project as well as to specific levels of testing.

· Determining risks involved in testing and identifying testing objectives. This helps in determining the scope of testing.

· Estimating effort and cost involved in testing activities.

· Identifying test levels required for testing and defining their coordination with other project activities. You also define entry and exit criteria for each level of testing.

· Scheduling testing activities and deciding on the order of their execution. While scheduling, you also assign resources for defined testing activities.

· Defining the environment to be used for testing at each level.

· Selecting metrics for monitoring and controlling test activities and templates for test execution. You also decide on the level of details required in these metrics and all other test documents.

· Deciding how test activities should be performed and how to evaluate test results.

Test Planning Activities
Test planning activities are generally carried out by test managers in collaboration with other team members and stakeholders. They are aligned with the mission of the testing team and test policy of the organization.

Test Planning Activity

Description

Define approach

Define the approach to testing. It includes deciding on the overall approach to completing the project as well as to specific levels of testing. You also define entry and exit criteria for each level of testing.

Determine risks

Determine risks involved in testing and identifying testing objectives. This helps in determining the scope of testing.

Estimate effort

Estimate effort and cost involved in testing activities.

Identify test level

Identify test levels required for testing and defining their coordination with other project activities.

Schedule testing activities

Schedule testing activities and deciding on the order of their execution. While scheduling, you also assign resources for defined testing activities.

Define environment

Define the environment to be used for testing at each level.

Select metrics

Select metrics for monitoring and controlling test activities and templates for test execution. You also decide on the level of details required in these metrics and all other test documents.

Decide test activities performance

Decide how test activities should be performed and how to evaluate test results.

Test Monitoring
Definition:
Test monitoring is a test management task used to check the progress of test execution. While performing this task, test monitoring reports are created manually and/or by using tools to compare actual achievement with planned activities. This comparison gives you variance data that acts as an input for process improvement initiatives. Reports to be used for test monitoring are mentioned in the test plan. Based on the information recorded in test monitoring reports, the test plan can be revised as required.

Test monitoring is used to:

· Provide feedback to the test manager about execution of testing activities. The feedback can further be used to improve the testing process.

· Provide visibility about test results.

· Compare the status of testing against exit criteria to determine whether or not more testing is required.

· Collect data for future test estimation.

Example:
During test execution, you will monitor the progress by creating reports that will include the number of test cases passed or failed, with planned and actual time taken to execute the tests. By comparing this, you can decide to change the test cases, estimations, and even may change the test approach.

Test Monitoring
Definition:
Test monitoring is a test management task used to check the progress of test execution. Test monitoring reports are created either manually or by using tools to compare actual achievement with planned activities. Reports used for test monitoring are specified in the test plan. Based on the information recorded in test monitoring reports, the test plan can be revised as required.

Example:
Example of Test Monitoring
During test execution, you will monitor the progress by creating reports that will include the number of test cases passed or failed, with planned and actual time taken to execute the tests. By comparing this you can decide to change the test cases.

Uses of Test Monitoring
Test monitoring is used to:

· Provide feedback to the test manager about execution of testing activities. The feedback can further be used to improve the testing process.

· Provide visibility about test results.

· Compare the status of testing against exit criteria to determine whether or not more testing is required.

· Collect data for future test estimation.

Test Control
Definition:
Test control is a test management task where you take action when results from tests show a deviation from what was planned. Actions are taken based on information and metrics from test monitoring. Test control includes tasks such as changing the test approach to the schedule or modifying the schedule altogether. Test control may affect test activities or any other SDLC task.

Some of the test control actions are:

· Making decisions based on information from test monitoring.

· Re-prioritizing tests when an identified risk occurs such as late software delivery.

· Changing the test schedule due to unavailability of a test environment.

· Setting an entry criterion requiring fixes to be retested by a developer before accepting them into a software build.

· Changing test priority and focus according to defect clustering experienced with the initial set of testing.

Example:
Consider a scenario where the testing team cannot release a portion of software under test because of unavailability of the test environment. But, the released date cannot be pushed because of market requirements. In such cases, test control will help you reprioritize the tests. You can start testing the components immediately after they are complete, without waiting for other components. Test control may also involve rescheduling the tests for weekends.

Test Control
Definition:
Test control is a test management task where you take action when results from tests show a deviation from what was planned. Actions are taken based on information and metrics from test monitoring. Test control includes tasks such as changing the test approach or modifying the schedule altogether. Test control may affect test activities or any other SDLC task.

Example:
Test Control Actions
Some of the test control actions are:

· Making decisions based on information from test monitoring.

· Re-prioritizing tests when an identified risk occurs such as late software delivery.

· Changing the test schedule due to unavailability of a test environment.

· Setting an entry criterion requiring fixes to be retested by a developer before accepting them into a build.

Example of Test Control
Consider a scenario where the testing team cannot release a portion of software under test because of unavailability of the test environment. But, the released date cannot be pushed because of market requirements. In such cases, test control will help you re-prioritize the tests. You can start testing the components immediately after they are complete, without waiting for other components. Test control may also involve rescheduling the tests for weekends.

Configuration Management
Configuration management is the task of maintaining and controlling changes to all entities of a system. It defines entities and ways to manage them. Entities include source code, the test script, hardware, third-party software, and all documentation. Procedures and tools used for configuration management are identified in test planning.

In the SDLC, a software component goes through many revisions before a final product is developed. Configuration management helps ensure that developers and testers are working on the correct version at all times. It also helps testers manage testware and test results so that they can uniquely identify the correct test document to use.

Configuration Management
Configuration management is the task of maintaining and controlling changes to all entities of a system. It defines entities and ways to manage them. Entities include source code, test scripts, hardware, third-party software, and all documentation. Procedures and tools used for configuration management are identified in test planning.

In the SDLC, a software component goes through many revisions before a final product is developed. Configuration management helps ensure that developers and testers are working on the correct versions at all times. It also helps testers manage test documents so that they can uniquely identify the correct document to use.

Version Control
Definition:
Version control involves managing versions of documents, source code, and programs. The development team may change the same files repeatedly to modify, add new functionality, or fix defects in them. The testing team then uses these files to test new functionality or verify fixed defects. Version control ensures that all teams are working on the correct version of files. It also helps retrieve the previous versions of documents if required. Version control is generally done by using document management tools.

Example:

The Test Basis
The test basis is a collection of documents that are used to gather the requirements of a component or system. It includes the risk analysis document, requirement specification, architecture, and design specification. You can use the test basis to understand the functions that a system should be able to perform. During test planning, you use the test basis not only to identify what to test but also to design test cases.

The Test Basis
The test basis is a collection of documents that are used to understand the functionality of a component or system. It includes the risk analysis document, requirement specification, architecture, and design specification. You can use the test basis to understand the functions that a system should be able to perform. During test planning, you use the test basis not only to identify what to test but also to design test cases.

Test Plans
Definition:
A test plan is a testing document that contains not only the approach to testing activities but also their estimate and schedule. It is created when you document the results of test planning activities. A high-level test plan can be created for the complete testing process. You can also create a detailed test plan for each level of testing to keep track of the testing process. A test plan describes features to be tested, testing tasks to be performed, the environment in which testing is to be done, and who will perform the testing. A test plan does not define how testing activities will be performed; it only describes what to perform.

Example:

When to Create a Test Plan
Test planning activities should start at the beginning of the SDLC. A high-level test plan can be created at the start of the project with project-level requirements. Detailed test planning then proceeds in parallel with the development life cycle by creating level-specific test plans following the V-model for software development. Level-specific plans are written in reverse order of their execution. For example, acceptance level testing is conducted in the last phase, but its test plan is created in the requirement analysis phase.

The table lists the level-specific test plans and when should you start creating them.

Test Plan

Description

Acceptance test plan

Acceptance test planning starts as soon as the requirement analysis phase is complete. It should start early in the life cycle because the acceptance test plan describes the criteria for acceptance of the system by the customer. Therefore, it can be developed using requirement specifications.

System test plan

System test planning starts when the high-level design of the project is complete. The system test design is created using requirement specifications and design documents to test functional and nonfunctional requirements of the system.

Integration test plan

Integration test planning starts when the detailed design is complete. Detailed design describes the components to be built and integrated based on priorities and risks. Therefore, the integration test plan describes the priority with which to test the integrated components.

Component test plan

Component test planning and test execution run in parallel with the coding phase. The component test plan is created using requirement and component specifications, which describe the behavior of each component. The component test plan defines the testing tasks to be performed to verify the functional requirements of components.

Activity 5-2

Discussing Test Planning Concepts
Scenario:
The requirement analysis phase is complete and requirement specification is signed off by the client. You want to create a plan for executing test activities. Before you start creating the test plan, you want to test your understanding on test planning concepts.

1.

Which element of the test plan is evaluated during test execution?
a)
Test tasks
b)
Environmental needs

c)
Exit criteria
d)
Test team training
2.

You should stop testing when


a)
Time for testing is over.


b)
All planned tests are executed.

c)
Test completion criteria are met.
d)
No defect is found in the execution of first few planned tests.
3.

A defect was detected, fixed, and verified in component testing. What according to you is the cause of finding this defect again in system testing?
a)
Test documentation is not managed properly.

b)
Version control.
c)
Confirmation testing was not done.
d)
Regression testing was not done.
4.

Configuration management does not include
a)
Controlled access to source code.
b)
Difference in source code versions.


c)
Comparison of actual results with expected results.

d)
Incident management.
Topic B

Identify Risks

You are now familiar with test planning and its importance. To effectively plan and estimate testing effort, it is important to plan for the risks involved in the testing process and accordingly estimate the changes in effort and test planning. In this topic, you will identify risks and the effect of risks on the effort of testing.

While testing the system, you can never really be sure that all activities are executed in the same way and within the time limit as they were planned in the development cycle. Also with the given schedule for the testing activities, it is impossible to test everything in the software. Therefore, before you start creating a test plan, you need to check that there is any type of risk present in the testing. Risk analysis will help focus the testing effort on the most critical risks involved in the system.

Risk
Definition:
A risk is the possibility of an outcome being incorrect or undesirable. Any events impacting the cost, scope, schedule, and quality of a software application are considered a risk. The probability of an event involving a risk is called the likelihood, and the negative consequence of the risk is called the impact. The likelihood of a risk in a project would reduce the quality of the product and the project’s success. The level or severity of a risk is estimated on the basis of its likelihood and impact. A risk is of high severity if the chances of its occurrence are high and it can result in some problems for the product or project.

Example:
After the development phase, your project is in the integration testing stage. You are committed to delivering a quality product with available resources and within the timeline. Because of the change in market conditions, your customer has asked you for a requirement change to implement a new functionality in the product. The customer has already announced the release date for the product, leaving you with no choice to push delivery dates. You, as a test manager, will identify the risks involved in implementing the new functionality so that you can accordingly plan for the testing effort and schedule. The risks involved in this scenario can be:

· Meeting delivery dates.

· Availability of resources.

· Project budget.

· Scope of testing.

· Quality of the product.

Risk
Definition:
A risk is the possibility of an outcome being incorrect or undesirable. Any events impacting the quality of a software application are considered a risk. The probability of an event involving a risk is called the likelihood, and the negative consequence of the risk is called the impact. The likelihood of a risk in a project would reduce the quality of the product and the project’s success. The level or severity of a risk is estimated on the basis of its likelihood and impact. A risk is of high severity if the chances of its occurrence are high and it can result in some problems for the product or project.

Example:
Example of Risk
After the development phase, your project is in the integration testing stage. You are committed to delivering a quality product with available resources and within the timeline. Because of the change in market conditions, your customer has asked you for a requirement change to implement a new functionality in the product. The customer has already announced the release date for the product, leaving you with no choice to push delivery dates. You, as a test manager, will identify the risks involved in implementing the new functionality so that you can accordingly plan for the testing effort and schedule. The risks involved in this scenario can be:

· Meeting delivery dates.

· Availability of resources.

· Project budget.

· Scope of testing.

· Quality of the product.

Product Risk
Definition:
A product risk is the risk of not implementing user, customer, or stakeholder requirements in software. It is a deviation of the system’s functionality from objectives mentioned in the requirement specification. A product risk may cause a software application to skip a required functionality. It may also cause the software to be unreliable and result in financial or any other damage to users. In addition to the functionality, product risks include security, reliability, usability, and performance of the system.

Example:
Risk to the quality of software can be:

· Software with defects delivered to the customer.

· Possibility that the software will harm users.

· Functional and nonfunctional characteristics.

Product Risk
Definition:
A product risk is the risk of not implementing user, customer, or stakeholder requirements in software. It is a deviation of the system’s functionality from objectives mentioned in requirement specification. A product risk may cause a software application to skip a required functionality. It may also cause the software to be unreliable and result in financial or some other damage to users. In addition to the functionality, product risks include security, reliability, usability, and performance of the system.

Example:
Example of Product Risk
Risk to the quality of software can be:

· Software with defects delivered to the customer.

· Possibility that the software will harm users.

· Functional and nonfunctional characteristics.

Project Risk
Definition:
A project risk is the risk involved in managing and controlling a project. Project risks include not adhering to the schedule or budget of a project, thereby impacting the success of the project. Project risks are triggered by factors such as lack of skills and resources, incorrect identification of requirements, and quality of code and tests. They are reduced through risk mitigation and contingency actions. Project and product risks are stated in the test plan along with their contingencies.

Example:
Risk to the planning of a project can be:

· Late delivery of components to be tested.

· Non-availability of the test environment.

· Delays in fixing defects.

Project Risk
Definition:
A project risk is the risk involved in managing and controlling a project. Project risks include not adhering to the schedule or budget of a project, thereby impacting the success of the project. Project risks are triggered by factors such as lack of skills and resources, incorrect identification of requirements, and quality of code and tests. They are reduced through risk mitigation and contingency actions. Project and product risks are stated in the test plan along with their contingencies.

Example:
Example of Project Risk
Risk to the planning of a project can be:

· Late delivery of components to be tested.

· Non-availability of the test environment.

· Delays in fixing defects.

Risk Identification
Definition:
Risk identification is the process of identifying product and project risks using techniques such as interviews, assessments, risk workshops, and checklists. To identify risks, you can list down the features and attributes of the application. If any one of these features does not work as intended, then it is a case of product risks. You can use requirement specifications, design specifications, or any other documentation to identify product risks. Project risks such as non-availability of resources, hardware and software dependencies, and change in functional requirements of software are identified during the test planning phase.

Example:
In an application for an ATM machine, the list of features and attributes identified as risks includes:

· Cash withdraw

· Cash deposit

· Balance check

· Bill payment

· Purchasing

· Bank statements

· Usability

· Performance

· Security

Risk Identification
Definition:
Risk identification is the process of identifying product and project risks using techniques such as interviews, assessments, risk workshops, and checklists. To identify risks, you can list down the features and attributes of the application. If any of these features do not work as intended, then it is a case of product risks. You can use requirement specifications, design specifications, or any other documentation to identify product risks. Project risks such as non-availability of resources, hardware and software dependencies, and change in functional requirements of software are identified during the test planning phase.

Example:
Example of Risk Identification
In an application for an ATM machine, the list of features and attributes identified in the first step of risk management includes:

· Cash Withdraw

· Cash Deposit

· Balance check

· Bill payment

· Purchasing

· Bank statements

· Usability

· Performance

· Security

Risk Analysis
Definition:
Risk analysis is the process of categorizing identified risks based on their likelihood and impact. It helps you determine what and what not to test, the testing priority, and the depth of testing. Based on risk analysis, the priority of testing is defined by identifying high-risk components in an application and testing them more rigorously than the other components. Risk analysis should start as soon as the requirement analysis stage is complete. Risk analysis should be revisited at various stages of the life cycle, depending on the changes to the application. It should also be reviewed in case there are any changes to project requirements and resources.

During risk analysis, the likelihood and impact of risks are defined. Indicators such as high (H), medium (M), and low (L) are used to define the levels of likelihood and impact. You can also use numeric values such as 3, 2, and 1 for defining the levels in descending order. Risk priority is then calculated by adding the numeric values for likelihood and impact. Features with a high-risk priority value are tested first, but those with a very low risk priority value may not be tested at all.

Example:
Risk Analysis
Definition:
Risk analysis is the process of categorizing identified risks based on their likelihood and impact. It helps you determine what and what not to test, the testing priority, and the depth of testing. Based on risk analysis, the priority of testing is defined by identifying high-risk components in an application and testing them more rigorously than the other components. Risk analysis should start as soon as the requirement analysis stage is complete. Risk analysis should be revisited at various stages of the life cycle, depending on the changes to the application. It should also be reviewed in case there are any changes to project requirements and resources.

During risk analysis, the likelihood and impact of risks are defined. Indicators such as high (H), medium (M), and low (L) are used to define the levels of likelihood and impact. You can also use numeric values such as 3, 2, and 1 for defining the levels in descending order. Risk priority is then calculated by adding or multiplying the numeric values for likelihood and impact. Features with a high-risk priority value are tested first, but those with a very low risk priority value may not be tested at all.

Example:

Risk Mitigation and Contingencies
After risk analysis, you need to mitigate risks by identifying actions to take. In this step, identified risks are controlled by using test strategies, such as review and inspection, and choosing an appropriate test design technique. In case of risks, there are some common actions or contingencies that you can plan in advance. You can:

· Add more resources.

· Reduce the scope of testing.

· Compromise on quality.

· And, push delivery dates.

Risk Mitigation and Contingencies
After risk analysis, you need to mitigate risks by identifying actions to take. In this step, identified risks are controlled by using test strategies, such as review and inspection, and choosing an appropriate test design technique. In case of risks, there are some common actions or contingencies that you can plan in advance. You can:

· Add more resources

· Reduce the scope of testing

· Compromise on quality by sharing known issues with the client

· Push delivery dates

Risk-Based Testing
Risk-based testing is the process of organizing test effort to reduce the number of product risks in the completed system. Risk-based testing starts early in the SDLC by identifying risks involved in the testing process and planning to mitigate them. It primarily involves the identification of the risk followed by an analysis to find the level of risk. Following this step, risk mitigation is planned by including more rigorous tests for high priority risks so that you can also plan contingency actions.

In the risk-based testing approach, risks identified are used to:

· Identify test techniques to be used for testing.

· Determine how much testing is required.

· Prioritize tests for testing high priority risks first.

Risk-Based Testing
Risk-based testing is the process of organizing test effort to reduce the number of product risks in the completed system. Risk-based testing starts early in the SDLC by identifying risks involved in the testing process and planning to mitigate them. It primarily involves the identification of the risk followed by an analysis to find the level of risk. Following this step, risk mitigation is planned by including more rigorous tests for high priority risks so that you can also plan contingency actions.

Example of Risk-based Testing
In the risk-based testing approach, risks identified are used to:

· Identify test techniques to be used for testing.

· Determine how much testing is required.

· Prioritize tests for testing high priority risks first.

Activity 5-3

Identifying Risks in the Testing Process
Scenario:
Suppose you have sent a prototype of the software to a client. The client has asked you to implement a new functionality after reviewing the prototype. To identify and analyze the risks involved in implementing the new functionality, you want to test your understanding on risk identification.

1.

For an online books purchase system, what is a product risk?
a)
Another system introduced in the market as a competitor.
b)
An incomplete system is released for system testing.
c)
Too many defects are found not fixed during retesting.

d)
The system fails to accept valid credit cards for payment.
2.

In a test plan template, what qualifies as a project risk under the risk and contingencies section?

a)
Non-availability of a key team member due to illness.
b)
Data corruption while transferring.
c)
The system fails to handle a key functionality.
d)
Slow response from the system.
3.

A product risk is not related to:
a)
A test item.

b)
Management of the test project.
c)
The test object.
d)
An unexpected outcome.
4.

Risks analysis helps you:
a)
Design, develop, and execute testing.
b)
Decide when to start testing.

c)
Decide where to test more.
d)
Focus on test plan creation.
Topic C

Specify the Test Approach

You familiarized yourself with the concepts of risks. Now you may want to identify the test strategy based on the risks identified. In this topic, you will identify the test approach.

An appropriate approach should be selected to identify tasks required for testing. Consider a scenario where you have to test an upgraded version of a system. Also, the client has given you limited time for testing. In such a scenario, you can use previous tests for functionalities that are the same as in the upgraded version. Also, because of limited time for testing, you can design tests based on requirement specification without performing initial risk analysis. Selecting these approaches will also help you identify what to test and schedule the testing activities.

The Test Approach
Definition:
A test approach is the strategy the testing team uses to perform test activities. Also called a test strategy, it is based on testing objectives of the project and on risk analysis. A test approach describes the starting point of the test process, test design techniques to be used, and types of tests to be performed. Selecting an appropriate test strategy helps identify criteria for when to stop testing at a specific test level. A test approach need not necessarily be the same for each project in an organization, but remains the same at all test levels in a project. Also, it can be preventive or reactive, based on the role of testers in the life cycle.

A test approach identifies rules and processes to follow while testing. Some of the rules and processes are:

· Requirements of special tools to be used.

· Requirements of tool training.

· Identification of metrics to be collected at the end of testing.

· Handling of configuration management.

· Requirements of regression testing at each testing level.

Example:
You are creating a master test plan for a chat application. You will define the test approach as: Component, system, integration, and acceptance level testing will be performed. One full time tester is required for system/integration testing. Component testing will be done by a developer and will be approved by the development team leader. Results of component testing will be provided to the testing team.
System/integration testing will be performed by a test manager and a test team leader. No specifics are required for system/integration testing. A component can have a maximum of two known defects provided that they do not obstruct the system/integration testing.
Acceptance testing will be performed by end users with the help of a test manager and test team leader. It will be performed for a period of one month after the system/integration testing is complete.
The Test Approach
Definition:
A test approach is the strategy the testing team uses to perform test activities. Also called a test strategy, it is based on testing objectives of the project and on risk analysis. A test approach describes the starting point of the test process, test design techniques to be used, and types of tests to be performed. Selecting an appropriate test strategy helps identify criteria for when to stop testing at a specific test level. A test approach need not necessarily be the same for each project in an organization, but remains the same at all test levels in a project. Also, it can be preventive or reactive, based on the role of testers in the life cycle.

A test approach identifies rules and processes to follow while testing. Some of the rules and processes are:

· Requirements of special tools to be used.

· Requirements of tool training.

· Identification of metrics to be collected at the end of testing.

· Handling of configuration management.

· And, requirements of regression testing at each testing level.

Example:
Example of the Test Approach
You are creating a master test plan for a chat application. You will define the test approach as: Testing of the chat application will consist of component, system/integration, and acceptance level testing. One full time tester is required for system/integration testing. Component testing will be done by the developer and will be approved by the development team leader. Results of component testing will be provided to the testing team.

System/integration testing will be performed by the test manager and the test team leader. No specifics are required for system/integration testing. A component can have a maximum of two known defects provided that they do not obstruct the system/integration testing.

Acceptance testing will be performed by end users with the help of the test manager and test team leader. It will be performed for a period of one month after system/integration testing is complete.

Preventive Test Approaches
A preventive test approach is a strategy where the testing team is involved right at the beginning of the SDLC. In this approach, test planning and design creation start with the requirement analysis phase following the V-model. Preventive approaches involve reviews of design and test cases before actually executing tests. This approach helps in early detection of defects and therefore takes much less time to fix such issues. The preventive approach reduces defect density during test execution and it is generally applied in critical projects.

Reactive Test Approaches
A reactive test approach is a strategy where the testing team is involved late in the SDLC. In this approach, test planning and design creation start only after software development is complete. This approach involves evaluating and executing the test object simultaneously. The reactive approach is helpful in finding defects that are difficult to predict and that do not appear until the system is complete.

Types of Test Approaches
In the test planning stage, you can use various sources of information to decide on the test approach. You can even use test documents from previous projects or ask experienced members in the team when deciding on the test approach. The table lists various test approaches and their description.

Test Approach

Description

Analytical

Uses data analysis to decide what to test and types of tests required. For example, the requirement-based approach, where requirement specification is used for planning and estimating a test. Risk-based testing is also an analytical approach where planning is based on the priority of identified risks.

Model-based

Uses a functional model of software to be tested. For example, you can create a statistical working model for e-commerce software. The model is created in requirement analysis and design stages. If the results of the software under test are the same as predicted by the model, then the software is considered to be working fine.

Methodical

Uses information from previous test results in the form of a checklist. For example, you have a list of defects, risks, and quality criteria from previous tests. Now you will design, implement, and execute future tests based on this list. Some of the methodical approaches are failure-based, experienced-based, checklist based, and quality characteristic based.

Process or Standard-compliant

Uses rules, recommendations, and standards that are developed outside your organization. The process or standard-compliance approach also uses Agile methodologies such as Extreme Programming as a test strategy.

Dynamic and Heuristic

Uses experience from experts and applies the rule of thumb for test planning. These are reactive approaches where execution and evaluation of tests take place concurrently. Dynamic and Heuristic approaches such as exploratory testing focus on finding maximum possible defects during test execution. The reason for applying this approach can be non-availability of previous data or having to use a complicated model developed during the design phase.

Consultative

Uses advice and guidance from technology and domain experts to determine what and how much to test. Technology and domain experts are nontesters such as users and developers.

Regression-averse

Uses existing test material, functional regression tests, and standard test suites. For example, you can automate all functional tests for system testing, so that you can rerun all previous tests to ensure that no new defect is introduced.

Selection of a Test Approach
A test approach is selected based on the requirements and objectives of testing. You can also combine test approaches if required such as the risk-based dynamic approach. The table lists factors that determine the selection of an approach and the appropriate test approach.

Factor

Approach

Product and project risks in the process

To upgrade an existing application with new functionalities, proper working of existing functionalities is very critical. Therefore, you can use the regression-averse approach in this case.

Skills and experience of test team members

If the testing team lacks required skills and experience, you can use the standard-compliant approach.

Testing objectives

If the customer requirement is to find as many defects as possible in a fixed time, you can use the dynamic approach.

Need for compliance

If you have to follow external and internal regulations for the development process as part of company policy, you can use a methodical test approach.

The nature of the product and business

For well defined requirements in safety critical products, you can use the requirement-based analytical approach.

Entry Criteria
Definition:
Entry criteria are a set of conditions for ensuring that test activities can start for a system. They determine when or when not to start testing a system based on the readiness of the component. It is always better to start testing with an entry criterion, so as to avoid testing the system incorrectly and ensure that system testing is complete according to the defined schedule. For example, the entry criterion for system testing should include a condition that integration testing is complete. If you start system testing without this entry criterion, you may detect defects that should have been detected in integration testing and you may lose focus on system testing.

Example:
Some of the entry criteria are:

· All source code is tested at the component level before integration testing.

· Development of a specific component is complete before component testing.

· Proper test data is available.

Entry Criteria
Definition:
Entry criteria are a set of conditions for ensuring that test activities can start for a system. They determine when or when not to start testing a system based on the readiness of the component. It is always better to start testing with an entry criterion, so as to avoid testing the system incorrectly and ensure that system testing is complete according to the defined schedule. For example, the entry criterion for system testing should include a condition that integration testing is complete. If you start system testing without this entry criterion, you may detect defects that should have been detected in integration testing and you may lose focus on system testing.

Example:
Example of Entry Criteria
Some of the entry criteria are:

· All source code is tested at the component level.

· Development of a specific component is complete.

· Proper test data is available.

Exit Criteria
Definition:
Exit criteria are a set of conditions for ensuring that the testing process is complete and the object under test is ready for the next stage. They are used to prevent a task from being considered complete when there are parts of the task still to complete. Exit criteria are used to report on testing and plan when to stop the testing. In addition, exit criteria ensure that the project application is satisfactorily completed before exiting the system test stage. When creating test plans for various levels, the exit criterion of a level serves as the entry criterion for the next level of testing.

Example:
Some of the exit criteria are:

· The application must provide the required services.

· All application documentation is complete and updated.

· All bugs with priority level one and two are resolved.

· Test procedures are executed to determine that the system meets the specified functional and nonfunctional requirements.

· The software application is delivered to the client with known low-priority defects.

Exit Criteria
Definition:
Exit criteria are a set of conditions for ensuring that the testing process is complete and the object under test is ready for the next stage. They are used to prevent a task from being considered complete when there are parts of the task still to complete. Exit criteria are used to report on testing and plan when to stop the testing. In addition, exit criteria ensure that the project application is satisfactorily completed before exiting the system test stage. When creating test plans for various levels, the exit criterion of a level serves as the entry criterion for the next level of testing.

Example:
Example of Exit Criteria
Some of the exit criteria are:

· The application must provide the required services.

· All application documentation is complete and updated.

· All bugs with priority level one and two are resolved.

· Test procedures are executed to determine that the system meets the specified functional and nonfunctional requirements.

· The software application is delivered to the client with known low-priority defects.

Factors Affecting Exit Criteria
Exit criteria for testing depend on a number of factors. Some of the factors include:

· Time and budget.

· Execution of a maximum number of test cases.

· More than 80% test coverage.

· And, the bug rate being below a certain level.

Exit Criteria Documents
Some documents used to determine exit criteria are test cases, test case design specifications, test plans, test logs, and test summary reports.

Types of Exit Criteria
One of the most challenging problems is deciding when to stop testing, since it is impossible to know when defect detection is complete. Some of the criteria for testing include:

Exit Criterion

Description

Expiration of scheduled testing time

This criterion is very weak, since it has nothing to do with verifying the quality of the application. It does not take into account that there may be an inadequate number of test cases or that there may not be any more defects that are easily detectable.

Discovery of predefined number of defects

This criterion is associated with the knowledge of the number of errors to detect and also overestimating the number of defects. If the number of defects is underestimated, testing will be incomplete. If the number of defects is overestimated, the test may never be complete within a reasonable time frame.

Execution of formal test cases without detecting any defects

This criterion deals with a major problem of the tester's not getting motivated to design test cases that force the tested program to its design limits. For example, the job of a software tester is complete when the test program results in no more errors. The tester is motivated not to find errors and starts writing test cases for a program that is error free. This criterion is valid only if there is a rigorous and totally comprehensive test case suite created, which approaches 100% coverage.

Combination of the above

Most testing projects utilize a combination of the above exit criteria. You should execute all tests. However, any further ad hoc testing will be constrained by time.

Activity 5-4

Defining the Test Approach
Scenario:
You have to test an application in which data security is very important. After risk analysis, you identified priority of risks involved in the application. Before you define the right approach to testing to cover all critical risks, you want to test your knowledge on various test approaches.

1.

The criterion to decide which test approach to use is


a)
The objective of testing.
b)
Proper understanding of the approach.
c)
Availability of a tool to use the approach.

d)
Determined by risks in the testing process.
2.

True or False? The criterion "All interfaces between components are tested" is the exit criterion for the acceptance test plan.
a)
True

b)
False
3.

The exit criterion helps you determine:
a)
Whether to continue with testing.
b)
That testing cannot be completed because of a large number of defects.

c)
That the system is ready for the next stage.
d)
Whether to stop further testing.
4.

Which test approach uses information from previous tests?


a)
Methodical

b)
Regression-averse
c)
Standard-compliant
d)
Analytical
e)
Model-based
Topic D

Understand Test Scheduling

You identified various types of test approaches. Based on the test approach you selected, you may want to estimate effort and schedule test activities. In this topic, you will identify test estimation types.

In order to complete a process within time and budget, it is important to estimate the required effort. Effort estimation helps you in creating a tentative schedule for testing tasks. It also helps you in prioritizing testing tasks based on the availability of resources and the environment.

Test Estimation
Test estimation is an activity that involves calculating effort and cost required for testing. It is based on risk analysis, requirements, and the test approach to determining effort required for testing activities. In estimation based on risk analysis, you must identify tasks and activities required for testing risks and then calculate required effort. Whereas, in estimation based on requirements, you break down a requirement into smaller tasks and sub-tasks and then estimate the required effort. Once test effort estimation is complete, you can allocate resources and create the schedule for testing.

Expert-Based Test Estimation
Test estimation for a complete system can be performed using one of two approaches, expert-based and metric-based. You can also use one approach for some components of a system and the other for remaining components. In expert-based test estimation, testers who will perform the testing will estimate the effort. The testing team can use a tool, such as a whiteboard or sticky notes, to calculate the effort and create a tentative schedule. Experts can also create estimations based on their experience that can then be finalized based on team consensus.

Metric-Based Test Estimation
In metric-based test estimation, you can use metrics from previous projects to estimate effort. You can classify a project as large, medium, or small and identify its complexity as complex, moderate, or simple. You can then look for estimations from similar past projects of approximately the same size and complexity. You can also estimate effort based on some parameters used in previous projects. These parameters can be the average number of testers required per developer, number of defects found by testers per day, and number of tests run by testers per day.

Metric-Based Test Estimation
In metric-based test estimation, you can use metrics from previous projects to estimate effort. You can classify a project as large, medium, or small and identify its complexity as complex, moderate, or simple. You can then look for estimations from similar past projects of approximately the same size and complexity. You can also estimate effort based on some parameters used in previous projects. These parameters can be the average number of testers required per developer, number of defects found by testers per day, and number of tests run by testers per day.

Factors Affecting Test Effort
Actual effort made in testing may vary from planned effort because of factors such as:

· Difficulty updating documentation as changes are made to the effort, in spite of the fact that detailed documentation is helpful for the overall project success.

· Difficulty estimating nonfunctional testing such as performance, usability, and security.

· Difficulty comprehending defects and their causes.

· Availability of testing tools.

· Skills and knowledge of testers involved.

· The number of defects found in testing.

Factors Affecting Test Effort
Actual effort made in testing may vary from planned effort because of factors such as:

· Difficulty updating documentation, in spite of the fact that detailed documentation is helpful for the overall project success.

· Difficulty estimating nonfunctional testing such as performance, usability, and security.

· Difficulty comprehending defects and their causes.

· Nonavailability of testing tools.

· Skills and knowledge of testers involved.

· A large number of defects found in testing.

The Test Environment
Definition:
The test environment is an environment that includes hardware, software, simulators, data, and supporting elements required to perform testing activities. It should be simulated as closely to the real environment as possible. If there is a requirement for running the system on multiple environments, such as on various hardware configurations and operating systems, it should be described in the test environment. You also need to identify the source of data required to execute the tests on the system.

Example:

The Test Schedule
The test schedule section of a test plan describes the start and end times of all testing activities. It is created keeping the project plan in mind. Milestones in the project plan such as the delivery date of various components and documents and availability of resources will affect the testing timeline. The level of detail in the test schedule depends on the level of the test plan. In a high-level test plan, the schedule of testing activities will depend on factors such as reviews of requirements and design, component delivery, and availability of resources. Whereas, in a component level test plan, the schedule of testing activities will be based on the completion date of components.

Activity 5-5

Understanding Test Scheduling Concepts
Scenario:
You want to create a schedule for testing a web application. Before you estimate the effort required for testing activities and create a schedule, you want to test your understanding on test estimation and test scheduling concepts.

1.

Which factor can influence estimation of test effort?
a)
Geographical locations of testers and developers.

b)
Skills and knowledge of testers.
c)
Attrition of team members.
d)
Load on the test manager.
2.

True or False? The test schedule depends on test effort and the environment required for testing.

a)
True
b)
False
3.

Time estimation covers the time to:


a)
Perform test planning.


b)
Prepare test scripts.

c)
Execute all test cases.
d)
Prepare software build for testing.
4.

Effort estimation may go wrong because of
a)
A change in the release date of a product.


b)
The number of defects identified in testing.
c)
The software development process.

d)
Characteristics of a product.
Topic E

Create a Test Plan
You are now familiar with effort estimation and the test schedule. After you identify the risks, test approach, and schedule, you may want to document them to create a plan. In this topic, you will create a test plan.

Before implementing testing activities, you need to create a systematic plan to document the strategies, schedule, and resources that you will use for testing the given software. Consider a scenario where you are asked to manage a software development project. Before starting the project, you need to ensure that there is a proper plan to perform the systematic activities. The plan will include all information related to the testing strategy or approach that would be followed, such as the schedule, identifying resources and staff, and defining roles and responsibilities. In the absence of any relevant test activities in the plan, the project will fail. Similarly, a well planned set of test activities enables you to organize and manage testing effort.

You are now familiar with effort estimation and the test schedule. After you identify the risks, test approach, and schedule, you may want to document them to create a plan. In this topic, you will create a test plan.

The IEEE Test Plan Template
The IEEE test plan template is a planning document used to capture results of the test planning and estimation process. The template has all components required to create a robust test plan, and provides you with the outline of the required components with any description. You can also customize the template by adding or modifying components to suit your requirements. For example, for a master test plan of the project, you can divide risks into “software risks” and “risk planning and contingencies”. You can also add components such as a “table of contents” and “glossary”. For level specific test plans, you can remove the components which you think are not required.

Figure 5-3: The IEEE 829 standard test plan template.

[image: image37]
IEEE is a nonprofit organization that provides technical and professional information, resources, and services. IEEE provides a set of documents to use in different stages in software testing. ISTQB refers to IEEE 829 templates for software testing documentation.

The Test Plan Identifier
Definition:
A test plan identifier is a unique number given to a test plan. It is a combination of numeric and alphanumeric characters and used to distinguish various test plans of the project. A test plan identifier may also identify if the test plan is a master test plan or level specific. Because a test plan is one of the several test documents, the test plan identifier helps manage the test plan and its version. You can also include information about the author of the test plan in the test plan identifier section.

Example:

The Introduction Section of the Test Plan
The introduction section of the test plan identifies the purpose and level of the test plan. It both summarizes the complete test plan and describes the scope of the test plan with respect to the project plan. The scope includes identification of various levels and types of testing to be followed for testing activities. You can also include other items in the introduction section, such as

· References to other documents related to this plan or process.

· Resource and budget constraints.

· The scope of test effort.

· The relation of testing activities with reviews.

· The process to be followed for version control.

For example, the introduction section for the system level test plan of a calculator application can be: This is the system test plan for a calculator application. The purpose of this document is to define the approach to the regression and system testing of Release 1.0 functionality for a Simple Calculator Application. This document shows scenarios from which the detailed test conditions will be derived and documented.
The Introduction Section of the Test Plan
The introduction section of the test plan identifies the purpose and level of the test plan. It both summarizes the complete test plan and describes the scope of the test plan with respect to the project plan. The scope includes identification of various levels and types of testing to be followed for testing activities. You can also include other items in the introduction section, such as:

· References to other documents related to this plan or process.

· Resource and budget constraints.

· The scope of test effort.

· The relation of testing activities with reviews.

· The process to be followed for version control.

Example of the Introduction Section of the Test Plan
For example, the introduction section for the system level test plan of a calculator application can be: This is the system test plan for a calculator application. The purpose of this document is to define the approach to the regression and system testing of Release 1.0 functionality for a Simple Calculator Application. This document shows scenarios from which the detailed test conditions will be derived and documented.

Test Items
Definition:
A test item is an individual element or function within an object being tested. Test items are identified from software inventories and other sources of information and documentation. While specifying test items in a test plan, you can include versions of test items, references to documents related to the test item, and references to previous bug reports related to the test item.

Example:
Some of the test items for a tax calculation application are:

· State tax calculation

· Federal tax calculation

· Gross pay calculation

· Interface with the central database

Test Items
Definition:
A test item is an individual element or function within an object being tested. Test items are identified from software inventories and other sources of information and documentation. While specifying test items in a test plan, you can include versions of test items, references to documents related to the test item, and references to previous bug reports related to the test item.

Example:
Example of Test Items
Some of the test items for a tax calculation application are:

· State tax calculation

· Federal tax calculation

· Gross pay calculation

· Interface with the central database

Features to Be Tested
Features to be tested are based on functional and nonfunctional requirements. They are also identified on the basis of risk analysis, where low-risk features will not be tested in the case of a resource crisis or if the project is running behind schedule. Lower level test plans may provide a detailed description of the features to be tested. For example, an online banking application may require the following features to be tested:

· Online bill payment

· Check account balance

· Transfer funds

[image: image39]
There is a slight difference between test items and features to be tested. Test items are described from a technical viewpoint and features to be tested are described from a user’s viewpoint.

Features to Be Tested
Features to be tested are based on functional and nonfunctional requirements. They are also identified on the basis of risk analysis, where low-risk features will not be tested in the case of a resource crisis or if the project is running behind schedule. Lower level test plans may provide a detailed description of the features to be tested.

[image: image40]
There is a slight difference between test items and features to be tested. Test items are described from a technical viewpoint and features to be tested are described from a user’s viewpoint.

Example of Features to Be Tested
For example, an online banking application may require the following features to be tested:

· Online bill payment

· Check account balance

· Transfer funds

Features Not to Be Tested
The features not be tested section of the test plan describes the features that should not be tested. You can also describe reasons for not testing these features, such as the feature not implemented, nonessential, and fit to use as is from the previous build. For mission-critical applications, there may not be any features that are not to be tested because the client would decide that the software should be tested in its entirety. While selecting features that need not be tested, you cannot simply skip a feature due to time constraints. For example, in the case of an online banking application, the following features may not be tested:

· Transfer funds to other banks—This functionality is not tested at this level because it is yet to be implemented.

· Access the online banking application on the cell phone—Out of scope, this functionality is not mentioned in the requirement specification.

· Testing on different operating systems; for instance, UNIX—This will be performed in system level testing.

Features Not to Be Tested
The features not to be tested section of the test plan describes the features that should not be tested. You can also describe reasons for not testing these features, such as the feature not implemented, nonessential, and fit to use as is from the previous build. For mission-critical applications, all features need to be tested because the client would decide that the software be tested in its entirety. While selecting features that need not be tested, you cannot simply skip a feature due to time constraints.

Example of Features Not to Be Tested
For example, in the case of an online banking application, the following features may not be tested:

· Transfer funds to other banks—This functionality is not tested at this level because it is yet to be implemented.

· Access the online banking application on the cell phone—Out of scope, this functionality is not mentioned in the requirement specification.

· Testing on different operating systems; for instance, UNIX.

The Item Pass/Fail Criteria Section
The item pass/fail criteria section of the test plan describes the criteria to determine whether an item has passed or failed. Pass/fail criteria are specific to the level of test plans. For a master test plan, item pass/fail criteria can be “completion of all lower level plans” or “completion of integration and system level test plans with no defects remaining”. For a component level test plan, pass/fail criteria can be that 90 percent of all test cases should pass the test. This section includes entry and exit criteria of a test plan. When all exit criteria are met, all test items are assumed to have passed the tests.

The Suspension And Resumption Criteria Section
While testing, if the number of defects detected is more than anticipated and further testing will not add any value to the quality of system, you should suspend the testing. The suspension and resumption criteria section of a test plan lists conditions that call for suspending the testing process. You also need to specify the requirements for resumption of the testing process. Some of the suspension criteria can be:

· Incomplete development.

· The large number of defects.

· Critical defects that do not allow you to test further.

· Incomplete test environments.

· Lack of resources in the middle of testing.

Test Deliverables
Test deliverables are a component of the test plan that lists documents and tools required to be developed and used in the testing process. Test deliverables include:

· A test plan

· Test cases

· Test design specification

· Error logs

· Automated tools

The component and software to be tested are not part of test deliverables.

Test Deliverables
Test deliverables are a component of the test plan that lists documents and tools required to be developed and used in the testing process. Test deliverables include a test plan, test cases, test design specification, error logs and automated tools. The components and software to be tested are not part of test deliverables.

Test Tasks
A project may be executed in multiple phases. For such projects, the test task section of the test plan will include parts of the application that are not covered in this test plan. This makes it very clear that defects should not be reported against the functions that are stated in this section. Test tasks in a plan ensure that there are other plans covering the functions listed in this section.

Test tasks also include actions to take in order to execute testing mentioned in the test plan. For example, the test task section of a system test plan specifies that:

· Prepare test conditions.

· Prepare test cases and data.

· Confirm availability of the test environment.

· Prepare the test summary report.

Test Tasks
A project may be executed in multiple phases. For such projects, the test task section of the test plan will include parts of the application that are not covered in this test plan. This makes it very clear that defects should not be reported against the stated functions in this section. Test tasks in a plan ensure that there are other plans covering the functions listed in this section.

Example of Test Tasks
Test tasks also include actions to take in order to execute testing mentioned in the test plan. For example, the test task section of a system test plan specifies that:

· Prepare test conditions.

· Prepare test cases and data.

· Confirm availability of test environment.

· Prepare test summary report.

The Responsibilities Section
The responsibilities section of a test plan lists roles and responsibilities for executing tests. This section identifies groups or individuals responsible for:

· Selecting features to be tested and features not to be tested.

· Selecting a test strategy.

· Providing test items.

· Providing the test environment.

· Providing required training.

· And, analyzing risks.

You can create a table of tasks and responsibilities in this section. You can also specify individual responsibilities such as the test manager as being responsible for all test plans and documentation, or the development team leader being responsible for verification of all test plans.

The Approval Section
The approval section lists individuals who will approve the process of testing so that the component or system can move on to the next level of testing. You can include a table in this section consisting of columns of such details as the role, name, signature, and date. Selection of roles to be added in the approval section depends on the audience of a test plan. For example, developers have very good technical knowledge but limited knowledge of the business process. Therefore, a developer should not be included as approving authority.

Figure 5-4: The Approval section of a test plan.

How to Create Test Plans

Procedure Reference: Create a Test Plan
To create a test plan:

1. Perform risk analysis to identify risks involved in the process.

2. Identify the test approach to follow for testing.

3. Estimate effort required for testing.

4. Write the outcome of the above three steps in a test plan template.

Discovery Activity 5-6

Identifying Components of a Test Plan
Scenario:
You have completed the test planning process. You have identified the test approach, risk, features to be tested, and exit criteria for the test plan. Before you document the analysis of the test planning process in a test plan, you want to test your knowledge on components of a test plan.

1.

The number of components in the IEEE test plan template is:
a)
14
b)
15

c)
16
d)
17
2.

Which of the following would normally form part of a test plan?


a)
Features to be tested
b)
Incident reports


c)
Risks

d)
Schedule
3.

Which documents are delivered to the client as part of a test deliverable?


a)
The test plan


b)
The test report

c)
Test scripts
d)
The design document
4.

For an online book purchase system, the test item section includes
a)
Usability
b)
Support of 10,000 users


c)
Interface with the payment system

d)
GUI testing of a web application
Discovery Activity 5-7

Creating a Test Plan
Scenario:
Your company OGC Inc. is developing a web application for online sales of tea in the U.S. As a test manager, you want to create a test plan for web application testing. The project manager has decided to use the V-model for development, and a team of six developers and four testers is selected. The web application will be developed using CGI-perl for server side programming and J2EE for the front end. The application will use the Oracle 9.0 database and run on Windows based systems.

Requirement specification for the application specifies that:

· The application should be easy to use and user friendly.

· Graphics used in the website should be fast to load.

· The application should have high availability and fast response time for enquiries and purchase transactions.

· A catalog should be displayed of various types of tea from which to select a specific tea for online purchase.

· The catalog information be obtained from a central database server managed by the parent company.

· Online payment transactions should be secure.

· Customers provide feedback which will impact the stock of tea for sale on the website.

· The application use an external payment system PayPal for online payment.

1.

Write the test plan identifier.

Answers will vary, but may include:Online_sale_Tea_001

2.

Write the introduction of the test plan.

Answers will vary, but may include:OGC Inc. is a US based tea company. Recently the company witnessed a sharp decline in the sale of tea. To help recoup this loss, OGC has embarked on online sale of its tea products. It will be a web based solution where customers can select and buy tea and also provide feedback. The purpose of this document is to define the approach to system testing of Release 1.0 features developed for the web application.

3.

List the test items.

1. Web interface2. Interface with the payment system 3. Interface with the central system 4. GUI testing of a web application 5. Performance testing

4.

List the features to be tested.

1. Usability2. Support of 10000 users 3. Online payments 4. Feedback

5.

List the features not to be tested.

1. Security testing2. Stress testing 3. User administration 4. Adding and removing tea products in the catalog

6.

Write the approach to be followed for testing activities.

Answers will vary, but may include:Testing will be done in phases. First, testing will be done with the central server system where the testing team will confirm that all tea product information is being fetched properly from the central system. In the second phase, the application will be tested with a credit card payment system where a customer can pay online. In the third phase, there will be integration testing with the PayPal online payment system. And in fourth and final phases the complete system will be tested as an integrated system.

7.

Specify item pass/fail criteria.

System test entry criteria:- The Test Plan is signed off. - System Specification is signed off. - System testing scripts are uploaded and mapped to requirements. - The System Test environment is complete, correct, and verified. - Release notes including impact analysis include software changes reviewed. - Required reference and test data verified completely and correctly. - User access verified completely and correctly. - Trained test resources are available. System test exit criteria: - 100% of the planned tests for the system have run with 95% of requirements passed. - All tests and results are recorded. - Rework, retest and regression tests are repeated until quality criteria are satisfied. - No outstanding critical/high severity defects. - All medium and low severity faults have an agreed resolution date. - Metrics are collected and recorded. - The System test completion report is signed off and published.

8.

Specify suspension and resumption criteria.

Suspension can occur at two primary levels:1. All test effort is suspended if the issue/fault prevents further testing. 2. If test effort in a particular area of the application/infrastructure or the testing of a particular feature is suspended, testing of other areas/attributes can continue while the issue is resolved.

9.

List the test deliverables.

1. The test plan2. Test scripts (ST, SIT, and UAT) 3. The review log for system test scripts 4. The review log for system test execution 5. The testing progress report 6. The review log for the ST system testing progress report 7. The weekly summary report 8. The test readiness report for SIT

10.

Specify test tasks to be performed.

- Confirm the test planning entry criteria are met.- Get test plan (this document) approval. - Confirm that test design entry criteria are met. - Prepare test conditions. - Prepare test cases and data. - Review test cases and data. - Prepare test sets. - Confirm that the test environment is ready. - Confirm that data required for testing is ready. - Confirm that test execution entry criteria are met. - Execute tests. - Execute confirmation testing. - Prepare the test summary report. - Get test summary report approval. - Confirm that test execution exit criteria are met.

11.

Specify environmental needs for testing.

1. The Central server system2. The External credit card payment system 3. The Online PayPal system

12.

Define responsibilities of the test manager, project manager, and test engineer.

1. Test manager:- Manages all testing phases. - Responsible for the SIT test phase. - Review test deliverables such as the test plan, test scripts, test report, and completion/exit reports. - Ensure quality of testing. 2. Project manager: - Manages all development activities, resources and costs. - Manages the test environments for System, Integration and UAT phases. 3. Test engineer: - Generates SIT and Regression test scripts to link back to System Integration requirements to ensure complete requirement coverage. - Prepares test data - Executes SIT and Regression test scripts. - Prepares weekly test reports.

13.

Specify staffing and training needs.

The test team must have good knowledge of the application under test and JMeter for performance testing of this application.
14.

Specify the test schedule.

System testing - 03/15/2009 to 03/22/2009System integration testing - 03/23/2009 to 03/29/2009 Performance testing - 03/30/2009 to 04/15/2009

15.

List the risk and contingencies.

1. Test environments may not be available as planned/required.2. Downtime may be long. 3. Non-availability of a testing resource during execution.

16.

List the roles that are required to approve this test plan.

Approval from the following is required:1. Project manager 2. Test manager 3. Client manager

Lesson 5 Follow-up
In this lesson, you created a test plan for activities to be performed in the testing process. You analyzed risks in the testing process, specified approach to testing, calculated effort required for testing, and scheduled testing activities. Test planning and estimation helps you in managing the execution of testing activities effectively.

1.

Identify some scenarios in which you would use different test approaches.

Answers will vary, but may include:

Selection of a test approach is based on the project and business requirements, risks, and skills of the testing team. Scenarios for selecting various test approaches can be:

* Scenario 1: An upgraded version of an application needs to be tested. In this case, you can use the regression-averse approach in order to automate all test cases that were developed during the previous round of testing for functional testing. This helps to ensure no new defects are introduced while upgrading the version.

* Scenario 2: In case you have well specified requirements and the objective of testing is to find as many defects as possible in minimum time and effort, you can use a blend of dynamic and requirement-based analytical test approaches.

2.

How does risk analysis help in test planning?

Answers will vary, but may include:

* Risk analysis reduces the chances of finding defects in the later stages of the development cycle.

* Risk analysis is used for prioritizing tests and selecting an appropriate test approach, which helps in estimating effort and reducing cost.

* Risk analysis helps to determine what and what not to test, the testing priority, and the depth of testing.

Lesson 6
Applying Test Design Techniques
Lesson Objectives:

In this lesson, you will apply test design techniques.

You will:

· Apply specification-based techniques.

· Apply structure-based techniques.

· Apply experience-based techniques.

Introduction

You have created a test plan with a high-level testing approach. For executing tests, you need to specify test cases using design techniques. In this lesson, you will identify test design techniques.

Up to this point in the development life cycle, you have reached the testing phase, and identified the features to be tested. However, you have limited time to test all of the features mentioned in the test plan. In order to improve the quality of the application, you want testing to be robust enough to detect a maximum number of defects. The tests should also verify a maximum number of requirements with minimum effort. To achieve this goal, you can use test design techniques to identify test cases that will help you test the application robustly.

Topic A

Apply Specification-Based Techniques

You have created a test plan and identified its components. Based on functional and nonfunctional requirements of the system, you need to apply a systematic approach to test requirements. In this topic, you will apply specification-based techniques to define test cases required for testing.

Consider a scenario where you have to design test cases for system level testing. The system has passed component and integration level testing. At system level testing, you need to test only functional and nonfunctional requirements. In such situations, specification-based techniques help you identify test cases with valid and invalid input for thorough testing of the system.

Test Design
Definition:
Test design is a technique used to describe the approach to testing an item. It also identifies test cases that are used to test the object. Test design techniques provide a set of rules or guidelines that a tester uses to identify and write test cases. The selection of a test design technique depends on the risk analysis, nature of the system, level of testing, and skills of the testing team. You can also apply more than one test design technique for a system.

Test design techniques are of three types: specification-based, structure-based, and experience-based. These techniques help you identify the maximum number of defects in minimum time and effort.

Example:
The performance of students in a school is determined by grades based on aggregate marks obtained in the examination. In order to test the software that calculates the grade of students, you can randomly select aggregate marks and check the grade displayed by the software. Using this approach, you will never be sure that you have tested enough and that no aggregate marks are left for which the software may calculate an incorrect grade.

For efficient and effective testing, you can choose a test design technique such as using a value from each range of aggregate marks that will have different grades. This will cover all grades that can be displayed by the software and also will help you identify the exact number of test cases required.

Test Design
Definition:
Test design is a technique used to describe the approach to testing an item. It also identifies test cases that are used to test the object. Test design techniques provide a set of rules or guidelines that a tester uses to identify and write test cases. The selection of a test design technique depends on the risk analysis, nature of the system, level of testing, and skills of the testing team. You can also apply more than one test design technique for a system.

Test design techniques are of three types: specification-based, structure-based, and experience-based. These techniques help you identify the maximum number of defects in minimum time and effort.

Example:
The performance of students in a school is determined by grades based on aggregate marks obtained in the examination. In order to test the software that calculates the grades of students, you can randomly select aggregate marks and check the grade calculated by the software. Using this approach, you will never be sure that you have tested enough and that no aggregate marks are left for which the software may calculate an incorrect grade.

For efficient and effective testing, you can choose a test design technique such as using a value from each range of aggregate marks that will correspond to different grades. This will cover all grades that can be displayed by the software and also will help you identify the exact number of test cases required.

Test Design Specification
Test design specification is a document that specifies the test condition for a test item and approach to testing. The group of test cases identified to test a feature is described in test design specification. The specification includes a test design specification identifier, which is a unique number, and features to be tested as identified in the test plan. It also includes a detailed approach to testing and the pass/fail criteria for the feature to be tested. You can use the test design specification template provided by IEEE or any other template that has the required components.

Figure 6-1: The IEEE test design specification template.

Specification-Based Techniques
Specification-based design techniques are dynamic techniques that are used for functional and nonfunctional testing. Also called black-box testing techniques, they concentrate on what a system or its components perform. They do not, however, include testing the internal structure of the component or system and how software works. To test a software product, test cases are written with all possible combinations of input using specification-based techniques.

Some specification-based techniques can be used at all levels of testing and some can be applied at one or two levels. Requirement and functional specifications are used to drive test cases by applying specification-based test design techniques. Different specification-based techniques include equivalence partitioning, boundary value analysis, decision tables, and state transition testing.

Figure 6-2: Types of specification-based techniques.

Equivalence Partitions
Equivalence partitions are specific partitions that represent a set of valid or invalid partitions for input conditions. A system handles values within each partition equivalently. Therefore, a valid partition is a range containing input conditions that will produce similar results for all input conditions. However, invalid partitions contain input conditions that are not expected from users and will produce results that are not expected from the system.

Equivalence Partitioning
Definition:
Equivalence partitioning is a black-box testing technique that you can use to partition groups of input conditions to generate the same kind of output. This technique involves identifying various equivalence partitions containing input conditions that are handled in the same way by the system. Since values within one partition are considered to be equivalent, the number of test cases required to test a system is reduced considerably because you need to test only one condition from an equivalence partition. Testing a condition in one partition will ensure that other conditions in that partition produce the same result.

Example:
The performance of students in a school is determined by providing grades based on aggregate marks obtained in the examination. In order to test the software that calculates the grades of students, you can identify the ranges of aggregate marks that will have different grades. Students will be awarded grades based on the following aggregates:

· An aggregate of 80-100 will be graded A.

· An aggregate of 60-79 will be graded B.

· An aggregate of 40-59 will be graded C.

· An aggregate of 0-39 will be graded D.

Equivalence Partitioning
Definition:
Equivalence partitioning is a black-box testing technique that you can use to partition groups of input conditions to generate the same kind of output. This technique involves identifying various equivalence partitions containing input conditions that are handled in the same way by the system. Since values within one partition are considered to be equivalent, the number of test cases required to test a system is reduced considerably by testing only one condition from an equivalence partition. Testing a condition in one partition will ensure that other conditions in that partition produce the same result.

Example:
The performance of students in a school is determined by providing grades based on aggregate marks obtained in the examination. In order to test the software that calculates the grades of students, you can identify the ranges of aggregate marks that will have different grades. Students will be awarded grade A if the aggregate marks range between 80 and 100 whereas those with aggregate marks ranging between 60 and 79 will be graded B. Students with aggregate marks ranging between 40 and 59 will be graded C whereas those with aggregate marks between 0 and 39 will be graded D.

Boundary Value Analysis
Definition:
Boundary value analysis is a test case design technique that allows you to identify bugs that occur on or around the boundaries of an equivalence partition. The result of a boundary value analysis provides additional input condition values to equivalence class values. It is specifically used to test the behavior of an application where the bug is most likely to occur. Unlike equivalence partitioning, it takes into account output specifications when deriving test cases.

Example:
To test boundary values for aggregate marks obtained by students, you need to identify the minimum and maximum boundary values from valid and invalid partitions based on the matrix for grades as shown:

· An aggregate of 80-100 inclusive will be graded A.

· An aggregate of 60-79 will be graded B.

· An aggregate of 40-59 inclusive will be graded C.

· An aggregate of 0-39 will be graded D.

Boundary Value Analysis
Definition:
Boundary value analysis is a test case design technique that allows you to identify bugs that occur on or around the boundaries of an equivalence partition. The result of a boundary value analysis provides additional input condition values to equivalence class values. It is specifically used to test the behavior of an application where the bug is most likely to occur. Unlike equivalence partitioning, it takes into account output specifications when deriving test cases.

Example:
To test boundary values for aggregate marks obtained by students, you need to identify the minimum and maximum boundary values from valid and invalid partitions based on the matrix for grades. For instance, the matrix for grades may specify grades A to D so that aggregate marks that range between 80 and 100 will be graded A whereas those ranging between 60 and 79 will be graded B. It also specifies that aggregate marks ranging between 40 and 59 will be graded C and those between 0 and 39 will be graded D.

Conditions and Actions
Definition:
Conditions are inputs or a combination of inputs required for testing a software product. They are derived from the requirement specification and for every input condition, there is an expected output. The output from an application, also called an action, is the response of the application to an input. In some cases, there is a difference in the output for different combinations of input conditions. In such scenarios, conditions help you in deriving test cases that cannot be identified using equivalence partitioning and boundary value analysis. Input conditions and actions are always stated as boolean values.

Example:
In case of software for an ATM machine, valid input conditions can be:

· ATM card is valid.

· ATM card is invalid.

· PIN entered is correct.

· PIN entered is incorrect.

· Money is available.

· Money is not available.

And the possible actions of the ATM software can be:

· Reject ATM card.

· Accept ATM card.

· Pay money.

· Ask PIN again.

Conditions and Actions
Definition:
Conditions are inputs or a combination of inputs required for testing software. They are derived from the requirement specification and, for every input condition, there is an expected output. The output from the application, also called an action, is the response of the application to an input. In some cases, there is a difference in the output for different combinations of input conditions. In such scenarios, conditions help you derive test cases that cannot be identified using equivalence partitioning and boundary value analysis. Input conditions and actions are always stated as Boolean values.

Example:
In the case of ATM software, valid input conditions can include validity of the ATM card, correctness of the PIN entered by the user, and finally, availability of money both in the ATM machine and in the user's account. Depending on the validity and correctness of the conditions, the possible actions of the ATM software include acceptance or rejection of the card, prompting for reentry of the PIN, and processing or denial of payment.

Decision Tables
Definition:
A decision table is a table showing combinations of inputs and their associated actions. Decision tables contain system requirements that are represented by logical conditions. Both input conditions and the resulting actions are represented as true or false. Each column of the decision table represents a business rule and helps in deriving a test case.

A decision table is also called a cause-effect table, where a cause represents an input or a combination of inputs and an effect represents the action. To perform testing using decision tables, you create one test case for each column of the table.

Example:

Cause-Effect Graphic Testing
Definition:
Cause-effect graphic testing is a black-box test design technique used to identify possible causes of a problem by using a cause-effect diagram. A cause-effect diagram is a graphical representation of inputs or causes of a problem along with their associated outputs or effects. The diagram lists the causes of a problem on the left and the effects on the right. Using this technique, you can design test cases to analyze the cause of a problem, identify the source of bugs, and observe the effects of the problem.

Example:
You are asked to identify possible causes and their associated effects while visiting a website. To do that, you need to create a cause-effect diagram to list the causes and effects of different conditions.

Cause-Effect Graphic Testing
Definition:
Cause-effect graphic testing is a black-box test design technique used to identify possible causes of a problem by using the cause-effect diagram. The cause-effect diagram is a graphical representation of inputs or causes of a problem along with their associated outputs or effects. The diagram lists the causes of a problem on the left and the effects on the right. Using this technique, you can design test cases to analyze the cause of a problem, identify the source of bugs, and observe the effects of the problem.

Example:
You are asked to identify possible causes and effects while visiting a website. To do that, you need to create a cause-effect diagram to list the causes and effects of different conditions.

Decision Table Testing
Decision table testing is a black-box test design technique in which test cases are designed from a decision table. This type of testing focuses on business logic and business rules. The test completion criterion in this testing is to execute at least one test case for each column of a decision table. Decision table testing can be used with the equivalence partitioning technique, where a combination of equivalence partitions can be used as conditions.

Decision table testing can be applied to situations where actions of the application under test depend on logical decisions.

State Transition Diagrams
Definition:
A state transition diagram is a graphical representation of the various states of a component or system. It shows events that cause the change of state and the effect of the change from one state to another. Also called a state diagram, it is used where the system can show a different output for the same input depending on the previous state. A state diagram helps represent the system design showing states, transitions, and their causes and effects. It also helps derive test cases from states in the state transition diagram.

Example:

State Tables
Definition:
A state table is a grid that shows transitions of states along with each possible event that can change the state of a system. It shows both valid and invalid transitions. Invalid transitions are useful for identifying events that are not expected from a system. It is difficult to identify invalid transitions using any other design technique.

States are listed on one side of the table and all possible events are listed at the top of the table. Each cell represents a state-event pair that indicates the resulting state of the system in case of the event's occurring. A state table is derived by analyzing four conditions:

· The states that the software may occupy.

· The transitions from one state to another.

· The events that cause a transition.

· The actions that result from a transition.

Example:

State Tables
Definition:
A state table is a grid that shows the transition of states along with each possible event that can change the state of a system. It shows both valid and invalid transitions. Invalid transitions are useful for identifying events that are not expected from the system. It is difficult to identify invalid transitions using any other design technique.

States are listed on one side of the table and all possible events are listed at the top of the table. Each cell represents a state-event pair that indicates the resulting state of the system in case of the event's occurring. A state table is derived by analyzing four parameters such as the states that the software may be in, transitions from one state to another, events that cause a transition, and the action resulting from a transition.

Example:
State Transition Testing
Definition:
State transition testing is a test case design technique that enables you to test the transition from one state to another in a software application. It uses a model that identifies different states of a software application and the transition between them. In addition, it identifies events, which cause the transition and specifies actions that result from the transition. Using the state transition testing technique, you can define the start state, input, output, and end state for each state transition. This technique not only reduces the number of tests to be performed but also provides sufficient coverage of the system under test.

Example:
When you start printing documents, initially the printer is in the offline state. The transition of the state of the printer occurs when you turn on the printer. In this state, you derive the output by taking printouts from the printer. The final state of the printer is on. Similarly, when the printer is in the on state, the transition takes place when you turn off power. In this state there is no output from the printer. The final state of the printer is off.

State Transition Testing
Definition:
State transition testing is a test case design technique that enables you to test the transition from one state to another in a software application. It uses a model that identifies different states of a software application and the transition between them. In addition, it identifies events, which cause the transition and specifies actions that result from the transition. Using the state transition testing technique, you can define the start state, input, output, and end state for each state transition. This technique not only reduces the number of tests to be performed but also provides sufficient coverage of the system under test.

Example:
When you start printing documents, initially the printer is in the offline state. The transition of the state of the printer occurs when you turn on the printer. In this state, you derive the output by taking printouts from the printer. The final state of the printer is on. Similarly, when the printer is in the on state, the transition takes place when you turn off power. In this state there is no output from the printer. The final state of the printer is off.

Use Cases
Definition:
A use case is a step-by-step description of a task a user performs on a system. It describes the interactions between a user and a system for performing a specific task. A user in this case may be any person using the system or it can be any application used to perform and capture the steps of a task.

A use case specifies prerequisites for the execution of a task. It also specifies the state of the system after the use case is executed successfully. Use cases are written using business terms instead of technical terms. An input to the system is sent when user A enters the PIN and an output from the system is generated when the system allows access to the account. Use cases help develop test cases at the system and acceptance levels of testing.

Example:

Use Case Testing
Definition:
Use case testing is a black-box testing technique in which test cases are derived from use cases. Use case testing is used for functional and nonfunctional testing. It is useful in finding defects that a user may encounter in the real-world use of the system. In this type of testing, you can use system requirements to create use cases.

Example:
The process of accepting the ATM card and validating the PIN can be tested using use case testing. The use case will describe the procedure for successfully validating the PIN. The use case will also represent scenarios in which the validation can fail. You can then derive a test case based on the use case. The ATM application is then tested using the procedure for successful validation.

Activity 6-2

Identifying Specification-Based Design Techniques
Scenario:
A calculator application is designed to perform different arithmetical calculations. You want to create test cases to test the functionality of the application. Before you do that, you want to test your knowledge on specification-based design techniques.

1.

A decision table is:


a)
A table that shows the action of an application for a combination of events.


b)
A table that shows logical conditions.
c)
A table that lists requirements for testing.

d)
A table that represents a business rule.
2.

Black-box testing is:


a)
Functional testing
b)
Structural testing
c)
Informal testing

d)
Requirements testing
3.

Identify the black-box testing techniques.


a)
State transition technique
b)
LCSAJ


c)
Use case technique

d)
Boundary value analysis
4.

Use cases are also called:
a)
Conditions
b)
Test components

c)
Business processes
d)
Scenarios
Topic B

Apply Structure-Based Techniques

You have applied various specification-based techniques to test what a system performs. Now you may want to test how the system performs. In this topic, you will apply structure-based techniques to define test cases.

Testing the functionality of a software application does not ensure that all lines of code are executed. Specification-based techniques cannot identify defects in lines of code that are not executed. Consider a scenario where you have tested the functionality of a software application without testing how the functionality is implemented in the application. The application may not produce the desired result for some valid inputs. If code is written incorrectly, such defects cannot be detected by just providing input values. Using structure-based techniques for creating test cases will ensure that the application is free from bugs that are difficult to detect while executing the application.

Structure-Based Techniques
Structure-based design techniques are dynamic techniques that are based on testing source code. These techniques are used to test the structure of software. Structure-based techniques, also called white-box testing techniques, concentrate on how the system executes a particular functionality. For example, you can test loops used in code. Multiple test cases may be created to run the loop once, twice, or many times without considering the functionality of the loop. In some cases, you may also want to modify code for testing.

The extent of testing is decided based on the coverage of code by available test cases derived from specification-based techniques. Then, you create further test cases to increase the coverage. Different structure-based techniques include statement testing and coverage, decision testing and coverage, condition coverage, and multiple condition coverage.

Figure 6-3: Types of structure-based techniques.

Structure-Based Techniques
Structure-based design techniques are dynamic techniques that are based on testing the source code. These techniques are used to test the structure of software. Structure-based techniques, also called white-box testing techniques, concentrate on how the system executes a particular functionality. For example, you can test loops used in code. Multiple test cases may be created to run the loop one or more times without considering the functionality of the loop. In some cases, you may also want to modify code for testing. Different structure-based techniques include statement testing and coverage, decision testing and coverage, condition coverage, and multiple condition coverage.

Coverage
Coverage of testing is a degree that measures the amount of testing performed by a collection of test cases. Coverage, also called test coverage, is measured by calculating the number of items tested using a test case. Coverage is measured as
Coverage=(Number of coverage items tested/Total number of coverage items)*100%

The coverage item is one that can be counted such as the number of lines of code or number of requirements. Structure-based techniques use test coverage to derive test cases only for the code structure that is already implemented.

Limitations of Test Coverage
Test coverage does not guarantee complete testing even if the coverage is one hundred percent. The limitations of test coverage are:

· Complete coverage does not guarantee complete testing. For example, two test cases with the same test coverage are used to test an application. One test case with some input may find an error whereas the other with the same input may not find an error.

· Test coverage encompasses what has been written, and not what is not written. For example, if a function is not implemented in the system, structure-based techniques will not detect it.

Limitations of Test Coverage
Test coverage does not guarantee complete testing even if the coverage is one hundred percent. Two test cases with the same test coverage used to test an application may yield contrasting results. While one test case with some input may find an error, the other with the same input may not find an error. Test coverage encompasses what has been written, and not what is not written. For example, if a function is not implemented in the system, structure-based techniques will not detect it.

Code Coverage
Code coverage is an analysis that determines the portion of code in software executed by a set of test cases. While using structure-based test design techniques, elements or components of a software product are identified by code written for them. Types of code coverage are statement coverage, decision coverage, and condition coverage. Generally code coverage is done by using tools and is most effective at lower levels of testing such as component and integration testing.

Instrumentation
Definition:
Instrumentation for testing refers to the insertion of additional code into the existing program in order to count coverage items. This will help in determining code coverage during test execution. To evaluate test coverage in structure-based testing, it is necessary to determine which code segments are executed by test cases and which are not. Tools used for instrumentation insert a piece of code after every coverage item in code. Manually inserting additional code into a program is not possible because it requires a lot of effort and there are chances of missing a coverage item.

Example:
The tool used for instrumentation will insert a counter in the program and initialize the counter to zero. During test execution, the counter is incremented for every coverage item. After the test execution is complete, the value of the counter will be equal to the coverage items covered by the test case. A value of zero for the counter implies that the code fragment is not covered by test execution.

Statement Coverage
Definition:
Statement coverage is a metric used to calculate the number of executed statements in code. A statement may be covered on a single line, or it may be covered over several lines. One line may contain one statement, more than one statement, or a part of a statement. Some statements can also contain other statements. Statement coverage is calculated as:
Statement Coverage=(Number of executed statements/Total number of statements)*100%

You can directly apply statement coverage to object code without processing source code. Statement coverage, however, does not identify bugs that result from multiple conditions in source code.

Example:
Consider the given code:
Read MARKS

IF MARKS > 90 THEN

Print "Grade=A"

ENDIF

You have created a test case of marks less than 90. This test case will result in execution of the first, second, and fourth statements. Since marks are less than 90, the third statement will not be executed. You have covered three statements out of four using this test case, so statement coverage is 75% for this test case.

Statement Testing
Definition:
Statement testing is a test case design technique for testing a software component. It is used to ensure that every possible statement in code is tested. It provides credible information about the state of the component on which business decisions are made. It is important to calculate the percentage of executable statements that will be tested using statement testing. You can use the statement coverage metric to measure how much code has been tested for statements. You can then use this metric to create test cases for statement testing.

Example:
Consider the given code:
Read A

Read B

C=A-B

IF C > 0 THEN

Print "A is greater than B"

ENDIF

To perform statement testing in order to test each statement in the given code, you create a test case, which ensures that C is greater than zero. You create a test case with values of A and B as 6 and 4, respectively. Since C is equal to two, which is greater than zero, the test case ensures that all six statements are executed when you run the code with it.

Decision Coverage
Definition:
Decision coverage is a metric used to calculate the number of executed decision outcomes in code. A decision point has two outcomes, true or false. A decision in code can be an IF statement, a loop statement, or a CASE statement. Decision coverage is calculated as:
Decision Coverage=(Number of executed decision outcomes/Total number of decision outcomes)*100%

Decision coverage is a superset of statement coverage, which signifies that complete decision coverage always ensures complete statement coverage. Sometimes, decision coverage is also called branch coverage because a decision point has two branches, yes or no.

Example:
Consider the given code:
Read MARKS

IF MARKS > 90 THEN

Print "Grade=A"

ENDIF

The IF statement in the code will have two outcomes based on the value of MARKS. You created a test case test1_1 with marks greater than 90. This will give you 100% statement coverage but, it will cover only the ‘true’ outcome of the IF statement. For 100% decision coverage, you need to create one more test case with MARKS less than 90.

Decision Testing
Definition:
Decision testing is a test case design technique for testing a software component. It helps ensure that all outcomes of a decision point or branch in code are tested. The outcome of a branch is generally true or false. In order to test the outcome of a branch in code, you need to calculate the number of executable branch outcomes. You can use the decision coverage metric to measure how much code has been tested for decision outcomes. Since the outcome of each decision is either true or false, you require two test cases to achieve complete coverage on a decision.

Example:
Consider the given code with the test case, Test 1_1: NUM1=20, NUM2=10:
Read NUM1

Read NUM2

IF NUM1 > NUM2 THEN

Print "NUM1 is greater than NUM2"

ELSE

Print "NUM2 is greater than NUM1"

ENDIF

Assume that the code has complete statement coverage with the test case Test 1_1: NUM1=20, NUM2=10. Since the value of NUM1 is greater than NUM2, the decision statement NUM1 > NUM2 is evaluated to true and displays the message NUM1 is greater than NUM2 as the true outcome of the decision statement. To test the false outcome of the decision statement, you need to create a second test case as Test 1_2: NUM1=5, NUM2=15. Using this test case, the decision statement NUM1 > NUM2 is evaluated to false and the message NUM2 is greater than NUM1 is displayed as the false outcome of the decision statement.

Decision Testing
Definition:
Decision testing is a test case design technique for a software component to ensure that all outcomes of a decision point or branch in code are tested. The outcome of a branch is generally true or false. In order to test the outcome of a branch in the code, you need to calculate the number of executable branch outcomes. You can use the decision coverage metric to measure how much code has been tested for decision outcomes. Since the outcome of each decision is either true or false, you require two test cases to achieve complete coverage on a decision.

Example:
Example of Decision Testing
Consider the given code with the test case, Test 1_1: NUM1=20, NUM2=10:
Read NUM1

Read NUM2

IF NUM1 > NUM2 THEN

Print "NUM1 is greater than NUM2"

ELSE

Print "NUM2 is greater than NUM1"

ENDIF

Assume that the code has complete statement coverage with the test case Test 1_1: NUM1=20, NUM2=10. Since the value of NUM1 is greater than NUM2, the decision statement NUM1>NUM2 is evaluated to true and displays the message NUM1 is greater than NUM2 as the true outcome of the decision statement. To test the false outcome of the decision statement, you need to create a second test case as Test 1_2: NUM1=5, NUM2=15. Using this test case, the decision statement NUM1>NUM2 is evaluated to false and displays the message NUM2 is greater than NUM1 as the false outcome of the decision statement.

Condition Coverage
Definition:
Condition coverage is a metric used to calculate the number of all condition or sub-expression outcomes in code that are executed by a collection of test cases. For condition coverage, test cases are written to ensure that each condition in a decision statement is executed at least once. Every condition in a decision that is separated by logical-AND and logical-OR has to be tested both as true and false for complete condition coverage. Condition coverage is a superset of decision coverage; however, complete condition coverage does not ensure complete decision coverage.

Example:
For the decision IF(A&B), complete condition coverage would require four test cases:
test2_1: A is true, B is true

test2_2: A is true, B is false

test2_3: A is false, B is true

test2_4: A is false, B is false

Even if the THEN clause of the IF statement will not be executed for test cases test2_2 and test2_3, you will have to write these test cases for complete condition coverage.

Multiple Condition Coverage
Definition:
Multiple condition coverage is a metric used to calculate the number of combinations of all single condition outcomes that are executed within one statement by a test case. For multiple condition coverage, test cases are written to ensure that all possible combinations of condition outcomes in each decision and all possible entry points are executed at least once. The multiple condition coverage metric becomes very complex when you need to determine the minimum number of test cases required. Complete multiple condition coverage implies complete condition and decision coverage.

Example:
For the condition a AND (b OR (c AND d)), complete multiple condition coverage would require five test cases.
 a AND (b OR (c AND d))

Test_1 F - - -

Test_2 T F F -

Test_3 T F T F

Test_4 T F T T

Test_5 T T - -

Condition Determination Coverage
Definition:
Condition determination coverage is a metric used to calculate the number of single condition outcomes that can independently affect the decision outcome. The coverage is determined by calculating the percentage of such single conditions executed by a collection of test cases. Condition determination coverage does not include test cases where the result of a decision does not depend on a change in a single condition outcome. This helps reduce the number of test cases required for testing. Complete condition determination coverage implies complete decision and condition coverage.

Example:
For the decision A>5 OR B<8, we can have four possible combinations:

· A=6 (true), B=7 (true), A>5 OR B<8=true

· A=6 (true), B=9 (false), A>5 OR B<8=true

· A=4 (false), B=7 (true), A>5 OR B<8=true

· A=4 (false), B=9 (false), A>5 OR B<8=false

For the first combination, wrong calculation of either the first or second condition part will not affect the outcome of the combination. For the second, third, and fourth combinations, changing the value of at least one condition part will affect the outcome of the combination. Therefore, the test cases for condition determination coverage will not include the first combination.

Linear Code Sequence And Jump
Linear Code Sequence And Jump (LCSAJ) is an unbroken linear sequence of statements that are executed in sequence at runtime. Identified by line numbers in a source code listing they can also contain decision control, for as long as the flow continues from one line to the next. The LCSAJ consists of three statements: the start of the linear sequence of executable statements, the end of the linear sequence, and the target line to which control is transferred at the end of the linear sequence.

Consider the given code:
1. Read x, y

2. IF x > 5

3.
IF y > 3

4.
PRINT "Testing"

5.
ENDIF

6. ENDIF

7. PRINT "Software Testing"

If the value of x is less than 5, the flow of execution jumps to line 7. The first sequence of statements starts at line 1, ends at line 2, and jumps to line 7. Therefore, the first LCSAJ is (1, 2, 7). Similarly, if the value of y is less than 3, the flow jumps from line 3 to line 6, and the second LCSAJ is (1, 3, 6)

LCSAJ Coverage
LCSAJ coverage is a metric used to calculate the number of executable LCSAJs. LCSAJ coverage is calculated by dividing the number of LCSAJs exercised at least once by the total number of LCSAJs. Since LCSAJs are not easily identifiable from design documentation, LCSAJ coverage is possible only if code has already been written. A small change in code can have a significant impact on LCSAJs, which leads to great difficulty maintaining LCSAJ coverage.

LCSAJ Testing
LCSAJ testing is a white-box test design technique that you can use to design test cases for a software component that executes LCSAJs. You can use this technique to exercise more control on a piece of code that contains statements, decision points, and control structure. To test the LCSAJ, you need to calculate the percentage of executable LCSAJs of a software component. You can use the LCSAJ coverage metric to measure how much code is tested for LCSAJs.

Figure 6-4: A sample use of LCSAJ testing.

Activity 6-3

Identifying Structure-Based Design Techniques
Scenario:
You tested the functionality of the calculator application using specification-based design techniques. Now you want to test the internal logic of the application. Before you design test cases, you want to test your knowledge on structure-based design techniques.

1.

Structure-based techniques find defects in:

a)
Lines of code
b)
Data security
c)
Requirements of the system
d)
Behavior of the system
2.

True or False? 100% branch coverage guarantees 100% statement decision coverage.

a)
True
b)
False
3.

Coverage measurement:


a)
Is a measure of code coverage.
b)
Is used only for component and integration testing.


c)
Is a measure of test completion.

d)
Is a measure of functional requirements that are tested.
4.

What is the feature of structure-based test design techniques?
a)
They are used to test the requirement specification.

b)
They are used to design test cases to increase coverage.
c)
They are based on knowledge and experience of the testing team.
d)
They use a model of software to design test cases.
Topic C

Apply Experience-Based Techniques

You have applied structure-based techniques that test the internal logic or code of an application. Certain defects cannot be detected by using either specification-based or structure-based techniques. In this topic, you will apply experience-based techniques to detect such defects.

Consider a scenario where you have to test a system that has low risks involved. Therefore, the client wants you to complete the testing as soon as possible. In such cases, instead of creating test cases using the systematic approach which is time consuming, you can use experience-based techniques to derive test cases based on your experience on similar projects.

Experience-Based Techniques
In addition to the methodical approaches to designing tests, experience-based testing techniques are required to detect defects that may be overlooked by other systematic design techniques. Experience-based techniques are black-box techniques used to derive test cases that draw on the knowledge, intuition, and skills of individuals. Based on the experience of technical and business experts in similar systems, test cases are designed to cover the anticipated problems in the system. Experience-based testing techniques include error guessing and exploratory testing.

Error Guessing
Definition:
Error guessing is a test case design technique that enables you to make a meaningful guess about bugs that are likely to be present in the software application or system. It is an ad hoc method to identify tests that are likely to expose bugs based on past knowledge and experience of experts in the software testing environment. Using the error guessing technique, you can test specific areas that have not been covered by formal test case design techniques such as equivalence partitioning and boundary value analysis. Some of the typical conditions where you can try error guessing include division by zero, empty or null strings, empty files, and wrong input of data.

Example:
Consider a scenario where you have performed testing activities on certain areas of a software application using equivalence partitioning and boundary value analysis. The application may contain certain areas that are not handled by formal testing techniques such as behavior of the application for wrong data input. Therefore, you make an educated guess regarding the number of defects that might be present in the application under test, based on your experience of anticipating defects. Finally, you design tests specifically to expose the defects in the application.

Fault Attack
Definition:
Fault attack is a technique used to improve testing coverage by deliberately introducing faults in code. This technique is used to measure the fault tolerance of the system. Fault attack helps in testing quality and reliability of the system for specific failures. You can modify existing code or add code in order to introduce a fault in the system.

You can prepare a list of possible defects and failures for the system based on experience and defect data of similar systems. You can then design test cases to introduce such defects by changing the code. This will help you check the error handling capability of the code.

Example:
x=1;

while(x<=10)

{

x=x+1;

}

In the given code for a specific functionality of the system, the value of variable x is incremented by one. You know that if the value of variable x does not reach 10, the system will throw an error message. You can apply the fault attack technique by changing the expression x=x+1 to x=xa-1, so that the value of x never reaches 10. This will help you test whether or not the system throws an error message.

Exploratory Testing
Definition:
Exploratory testing is an informal testing technique in which test planning and execution run in parallel. It is not based on any structured testing approach and does not include any detailed test plans. Testing is performed without documenting test conditions or test cases. Testing starts with declaring the scope, objectives, and approach to a short time testing activity. The document that specifies testing tasks, objectives, approach, and deliverables for exploratory testing is called a test charter. Further test cases are developed based on the results of testing that started with the charter.

Example:
Suppose you want to test the functionality of a web browser. The functional requirements and specifications are not complete; therefore, you decided to use exploratory testing. You will start by creating a test charter that includes basic requirements such as – the browser should:

· Have a customizable toolbar.

· Be able to import settings from other commonly used browsers.

· Be compatible with commonly used operating systems.

· Have a user friendly interface.

· Be secure and have regular updates.

While testing the features as defined in the charter, you identified two major defects. The first is that the browser does not show any messages if no results are found for a search. And the second functional defect is that the toolbar is not accessible when the browser is not in the full screen mode. Now to proceed further with exploratory testing, you will design test cases for these two defects. This process continues till you do not find any new defects.

Exploratory Testing
Definition:
Exploratory testing is an informal testing technique in which test planning and execution run in parallel. It is not based on any structured testing approach and does not include any detailed test plans. Testing is performed without documenting test conditions or test cases. Testing starts with declaring the scope, objectives, and approach to a short time testing activity. The document that specifies testing tasks, objectives, the approach, and deliverables for exploratory testing is called a test charter. Further test cases are developed based on the results of previous testing.

Example:
Suppose you want to test the functionality of a web browser. Because functional requirements and specifications are not complete, you decide to use exploratory testing. You will start by creating a test charter that includes basic requirements one of which is that the browser should:

· Have a customizable toolbar.

· Be able to import settings from other commonly used browsers.

· Be compatible with commonly used operating systems.

· Have a user friendly interface.

· Be secure and have regular updates.

While testing the features as defined in the charter, you identify two major defects. The first one is that the browser does not show any messages if no results are found for a search. And the second functional defect is that the toolbar is not accessible when the browser is not in the full screen mode. Now to proceed further with exploratory testing, you will design test cases for these two defects. This process continues until you do not find any new defects.

Test Technique Selection
The factors that influence the selection of test design techniques are:

· Software development models used.

· Knowledge and experience of testers.

· Knowledge of defects that are likely to appear.

· Test objectives.

· The content and style of test documentation.

· Risks.

· Customer and contractual requirements.

· The type of system.

· Regulatory requirements.

· Time and budget.

Activity 6-4

Identifying Experience-Based Design Techniques
Scenario:
You have created test cases for the calculator application using systematic design techniques. You want to write test cases to verify that the application has common defects that are found in other similar applications. Before you do that, you want to test your knowledge on experience-based techniques.

1.

Error guessing and exploratory testing are used because
a)
They can be effective when there are detailed specifications.
b)
They ensure that all the code of the system is working.
c)
They do not need trained testers.

d)
They find defects that are missed by specification-based and structure-based techniques.
2.

The error guessing technique is used
a)
As the formal approach to designing test cases.
b)
Only after specification-based and structural-based techniques are used.

c)
By experienced testers.
d)
By end users.
3.

True or False? Exploratory testing starts with detailed test planning.
a)
True

b)
False
4.

What are the factors that influence the selection of test design techniques?
a)
Test item
b)
Test policy


c)
Test objective

d)
Risk
e)
Test level
Lesson 6 Follow-up
In this lesson, you identified black-box and white-box test design techniques. Test design techniques help you create test cases that will identify different types of defects at different stages of the development life cycle.

1.

What are the different test techniques that you will use to test a software application? Why?

Answers will vary, but may include:

* If the requirements are not clear, you can use the error guessing test design technique.

* If there are no or very few requirements, you can use exploratory testing.

* To determine how a software product responds to errors or wrong input, you can use fault attack.

* For testing an application that involves too many calculations, you can use boundary value analysis.

* For exhaustive testing at component level testing, you can use structure-based testing techniques.

* For functional and nonfunctional testing at system level testing, you can use specification-based testing techniques.

2.

How is the specification-based technique different from the structure-based technique?

Answers will vary, but may include:

* Specification-based techniques concentrate on functional testing of a software product, whereas structure-based techniques concentrate on covering maximum code while executing it.

* Structure-based techniques can determine the extent of testing performed by tests derived from specification-based techniques, but the vice-versa is not possible.

* For creating effective test cases using structure-based techniques, you need to have a good understanding of code. Specification-based techniques do not require you to have any knowledge of code to be able to create test cases.

Lesson 7
Developing Tests
Lesson Objectives:

In this lesson, you will develop tests.

You will:

· Identify the test development process.

· Create test cases.

Introduction

You have identified test design techniques. Before executing tests, you need to develop tests that contain information on what to test, how to test, and the expected result. In this lesson you will develop tests.

A test plan provides you with a schedule, an estimate of effort, and an idea of how to perform test activities. To test a particular functionality of a software application, you need to supply certain inputs. And if the software application generates errors upon testing, then there is a difference between the expected outcome of the test and the actual test result. Test development enables you to generate a pass or fail result for a test case using inputs that you control, thereby helping you determine whether the software meets a particular specification.

Topic A

Understand the Test Development Process

You identified black-box and white-box testing techniques. Before you apply these techniques to create test cases, you need to understand the process of developing test cases. In this topic, you will identify the test development process.

Consider a scenario where you have a list of test items and a plan to complete testing these items. The test development process helps you identify test conditions and test objectives, on the basis of an analysis of test items, their structure, and their behavior. You can then apply test design techniques to create test cases for testing a list of features and functionalities of test items.

The Test Development Process
The test development process is a mechanism for determining test objectives, developing the test approach, and finalizing implementation procedures to achieve these objectives. It starts when test planning is complete and includes three steps: test analysis, test design, and test implementation. The test development process can be performed informally with no or little documentation. However, documentation becomes critical for controlled execution of steps using templates. The level of formal documentation depends on the type of project, the process followed in an organization, and time constraints.

Figure 7-1: The test development process.

The test development process consists of three steps, which are described in the table.

Step

Description

Test analysis

Test objectives are identified by analyzing test basis documentation. In this step, the test approach is implemented by selecting test design techniques. You also determine test conditions that give you a clear idea of what to test.

The test conditions are documented using the IEEE test design specification template.

Test design

General testing objectives are transformed and specified in test cases. Test cases are created with a detailed test strategy to support efficient execution of test objectives.

Test cases are documented using the IEEE test case specification template.

Test implementation

This step involves gathering test data, preparing the test environment, and identifying tools that will be used for testing. A test procedure is developed that specifies the sequence of actions and test cases for the execution of tests. You also create test scripts for automating test execution.

The steps to execute a test are documented in the IEEE test procedure specification template.

Test Conditions
Definition:
A test condition is an event or item that can be tested using one or more test cases. Test conditions, also called test requirements or test inventories, are derived from a test basis. Conditions can include testing a function, testing a nonfunctional characteristic, such as security and performance, or testing a transaction between a user and the GUI. The selection of test conditions is based on risks, the ability to anticipate defects, advice from an experienced tester, and customer or contractual requirements.

Example:
At the component testing level, you have decided to use the decision coverage testing strategy to test a component of the system. For testing the decision IF(A>B) in code, there will be two test conditions.

· Values of A and B for which the decision outcome is true.

· Values of A and B for which the decision outcome is false.

Test Conditions
Definition:
A test condition is an event or item that can be tested using one or more test cases. Test conditions, also called test requirements or test inventories are derived from a test basis. Conditions can include testing a function, testing a nonfunctional characteristic, such as security and performance, or testing a transaction between a user and the GUI. The selection of test conditions is based on risks, the ability to anticipate defects, advice from an experienced tester, and customer or contractual requirements.

Example:
Understanding Test Conditions
At the component testing level, you have decided to use the decision coverage testing strategy to test a component of the system. For testing the decision IF(A>B) in code, there will be two test conditions.

· Values of A and B for which the decision outcome is true.

· Values of A and B for which the decision outcome is false.

Traceability
Definition:
Traceability is the ability of test conditions to be linked back to specifications and requirements. If there was a change in requirements during the SDLC, traceability helps identify the impact of the change. It also helps identify requirement coverage for a set of tests. There are two types of traceability: horizontal and vertical.

Horizontal traceability refers to tracing requirements for a level of testing using test documentation from the test plan to the test script. Vertical traceability refers to tracing requirements through the development process from the requirement specification to components developed.

Example:

Test Data
For functional testing, you need to provide input to the system being tested. Test data is a collection of input values required to execute test cases. It is either provided by the tester to the system or the system itself takes the required data from a database.

Typically created by a tester, test data affects and is affected by test execution. Test conditions can be identified for test data to be used in a test as data conditions such as types of records in a database, various records in a file, and fields of varying size in a record. Test data is considered efficient when it is minimum in size, can identify maximum errors, and can test all functionalities.

Test Cases
Definition:
A test case is a document that contains detailed instructions for testing the functionality of a software application. It describes the functionality of the application to be tested, the data to be entered, and the actions to take to check the actual result against the expected result. You need to have at least one test case to ensure that all requirements of a software application are met. You can even define a test case for parts of the software system such as for data entry, drop-down list values, and data ranges. A test case also enables you to validate one or more system requirements and uncover a maximum number of bugs by matching the expected result with the actual result.

Example:

Test Oracles
A test oracle is an entity that is used to determine the expected result of a test. The expected result is documented as part of a test case and compared with the actual result of the system under test. The comparison of expected and actual results helps determine whether a test has passed or failed. A test oracle can be a specification, a program that uses a different algorithm to obtain the same result as the program under test, a user manual, or an individual’s judgment.

You can create a test oracle in different ways. Some of them are:

· Once the value is decided, the tester derives the expected result by calculating or analyzing the specification of the test object.

· Testers can use a legacy system to identify the expected outcome from the system under test.

Test Oracles
A test oracle is an entity that is used to determine the expected result of a test. The expected result is documented as part of a test case and compared with the actual result of the system under test. The comparison of expected and actual results helps determine whether a test has passed or failed. A test oracle can be a specification, a program that uses a different algorithm to obtain the same result as the program under test, a user manual, or an individual’s judgment.

Different Ways of Creating Test Oracles
You can create a test oracle in different ways. Some of them are:

· Once the value is decided, the tester derives the expected result by calculating or analyzing the specification of the test object.

· Testers can use a legacy system to identify the expected outcome from the system under test.

Activity 7-2

Identifying the Test Development Process
Scenario:
The test planning phase is complete and you have created test cases for component level testing. Before selecting design techniques to create test cases, you want to test your understanding on the test development process.

1.

In which document of IEEE 829 would you find instructions for steps to take for a test including setup, logging, the environment, and measurement?
a)
Test plan
b)
Test design specification
c)
Test case specification

d)
Test procedure specification
2.

What is a test design technique?

a)
A process for selecting test cases.
b)
A process for determining expected outputs.
c)
A way to measure the quality of software.
d)
A way to measure in a test plan what has to be done.
3.

The process of identifying and designing test cases consists of the following activities:
i. Elaborate and describe test cases in detail by using test design techniques.
ii. Specify the order of test case execution.
iii. Analyze requirements and specifications to determine test conditions.
iv. Specify expected results.
What is the correct order of these activities?

a)
iii, i, iv, ii
b)
iii, iv, i, ii
c)
iii, ii, i, iv
d)
ii, iii, i, iv
4.

Which statements are true about test cases?
a)
A test case verifies that a product or system meets its design specifications.


b)
You need to have at least one test case to completely test that all requirements of a software application are met.

c)
A test case contains detailed instructions for testing the correct functionality of a software application.
d)
A test case contains a detailed description of the eventual workflow of testing.
Topic B

Create Test Cases

You familiarized yourself with the test development process. You may now want to create test cases for testing the functionality and internal structure of the application. In this topic, you will create test cases.

You already know that test cases enable you to verify test conditions and form the basis of all testing. Also, it is important for you to understand what you are trying to test, the input required for the test, and the results that are expected as the output of that test. Creating test cases enables you to accurately check the results after test execution; it also enables you to determine whether the software has responded as expected to testing.

You may now want to create test cases for testing the functionality and internal structure of the application. In this topic, you will create test cases.

The IEEE Test Case Specification Template
The IEEE test case specification template is a document that provides the structure for writing test cases. It incorporates components required to create a robust test case in the form of an outline but without any description. You can even customize the template by adding or modifying components to suit your requirements. The test case specification template is useful for testing high-risk and stable systems and helps less experienced testers to create an effective test case.

The IEEE test case template describes each test case in detail. Therefore it is not suitable for systems that are unstable and change frequently because it requires effort to create a new test case for each change.

Figure 7-2: The IEEE test case specification template.

Features of Test Cases
An efficient test case helps identify errors and describes how to perform one or more tests listed in the test plan. A good test case should be:

· Independent to meet a specific requirement.

· Easily understandable during testing.

· Free from spelling and grammatical mistakes.

· Able to cover at least one functionality or requirement.

· Able to uncover bugs.

The Purpose of Test Cases
A test case assesses the quality of a product and provides some measurable value to the organization with the explicit purpose of:

· Documenting test activities that collectively support the overall test plan.

· Assessing conformance to applicable specifications and regulations.

· Verifying compliance with a specific customer requirement.

· Verifying correctness of the product.

· Evaluating customer needs and expectations.

· Increasing control flow, logic flow, and data flow coverage.

· Simulating real end-user scenarios.

· Revealing errors or defects.

The Test Case Specification Identifier
The test case specification identifier is a unique number given to a test case to distinguish it from other test cases. It specifies the level of the test case which should be the same as the level of the related software. Ideally, the same naming convention as that followed for naming software is applied to the related test case. This helps in managing software and test case versions within configuration management. A test case specification identifier may also include:

· Short names or abbreviations.

· The version number of the test case.

· Name and contact information of the author.

· Revision history.

Figure 7-3: The test case specification identifier.

The Test Items Section of the Test Case
The test items section lists items and features the test case will test. The items and features are described according to the level of test for which the test case is being written. You should list references to documents that describe the items and features. Reference documents include:

· Requirements specification

· System design specification

· Detail design specification

· The user guide

· The operations manual

· The installation guide

For example, test items for a chatting application cover functionalities such as:

· Logging in to the application

· Creating a chat room

· Joining a chat room

· Chatting

The Test Items Section of Test Case
The Test Items section lists items and features that the test case will test. The items and features are described according to the level of test for which the test case is being written. You should list references to documents that describe the items and features. Reference documents include requirements specification, system design specification, detail design specification, the user guide, the operations manual, and the installation guide.

Example of Test Items
For example, test items for a chat application cover functionalities such as:

· Logging in to the application

· Creating a chat room

· Joining a chat room

· Chatting

Input Specifications
Definition:
Input specifications are actual inputs required to execute a test case. These may vary based on the level of testing. Inputs are described with specific values, data, tables, actions, files, conditions, and parameters passed to the system. You can also create tables of elements and values as inputs. A single table can be used for multiple levels of testing such as component and integration testing.

Example:
For the chatting application, the input specifications are:

· Enter the user name as user1 and password as chat@123 and click login.

· Click on the option of creating a chat room, enter QuickChat as the name for the new room, specify 10 for a maximum number of users, and set chat@1 as the password.

· If a chat room with the same name exists, change the name of the chat room.

· Log in as a different user in the chat room QuickChat, enter user2 as the user name and chat@1 as the password.

· If a wrong password is entered, the application should prompt for the correct password.

· If the number of logged in users is equal to 10, user2 should not be able to log in and receives an error message.

Input Specifications
Definition:
Input specifications are actual inputs required to execute a test case. These may vary based on the level of testing. Inputs are described with specific values, data, tables, actions, files, conditions, and parameters passed to the system. You can also create tables of elements and values as inputs. A single table can be used for multiple levels of testing such as component and integration testing.

Example:
Example for Input Specifications
For the chatting application, the input specifications are:

1. Enter the user name as user1 and password as chat@123 and click login.

2. Click on the option of creating a chat room, enter a QuickChat as the name for the new room, specify 10 for a maximum number of users, and set chat@1 as password.

3. If a chat room with the same name exists, change the name of the chat room.

4. Login as a different user in the chat room QuickChat, enter user2 as the user name and chat@1 as password.

5. If a wrong password is entered, the application should prompt for the correct password.

6. If the number of logged in users is equal to 10, user2 should not be able to log in and receives an error message.

Output Specifications
Definition:
Output specification refers to the expected output from a system and it is used to verify the execution of a test case. It can be a specific value or feature such as performance of the system. Output specifications help determine whether a test case has passed or failed. Outputs are also described with data, tables, actions, the final state of the system, and response time of the system. You can also create tables of elements and values as outputs. A single table of outputs can be used for multiple levels of testing such as component and integration testing.

Example:
For the chatting application, the output specifications are:

· Login successful.

· A new chat room with the name QuickChat appears.

· A new user joins the chat room.

· All users in the chat room are able to see other logged-in users.

Output Specifications
Definition:
Output specification refers to the expected output from a system and it is used to verify the execution of a test case. It can be a specific value or feature such as performance of the system. Output specifications help determine whether a test case has passed or failed. Outputs are also described with data, tables, actions, the final state of the system, and response time of the system. You can also create tables of elements and values as outputs. A single table of outputs can be used for multiple levels of testing such as component and integration testing.

Example:
Example for Output Specifications
For the chatting application, the output specifications are:

1. Login successful.

2. A new chat room with the name QuickChat appears.

3. New user joins the chat room.

4. All users in the chat room are able to see other logged-in users.

Environmental Needs
Definition:
Environmental needs are special additions or changes to the environment that must be implemented in order to run a test case. Based on the functionality of a product to be tested, you need to comply with special hardware, software, and configuration requirements, such as the availability of printers and network connections. Software requirements may include compilers, simulators, and testing tools. Environmental needs also include the use of stubs and drivers required for lower level tests such as component and integration testing.

Example:
For the chatting application, the environmental needs are:

· The Chat application should be running.

· At least five users should be logged in to the chat room.

Special Procedural Requirements
The Special Procedural Requirements section describes additional requirements necessary to set up the test environment. It also identifies special constraints on test cases. If a test case specification applies to more than one test case, then the specification can be used as the common procedure for several sets of tests. Alternatively, you can perform more than one set of steps or identify external procedures. Special procedural requirements focus on key elements such as:

· Special setup

· Operations intervention

· Output location and identification

· Special wrap-ups

Special Procedural Requirements
The Special Procedural Requirements section describes additional requirements necessary to set up the test environment. It also identifies special constraints on test cases. If a test case specification applies to more than one test case, then the specification can be used as the common procedure for several sets of tests. Alternatively, you can perform more than one set of steps or identify external procedures. Special procedural requirements focus on key elements such as special setup, operations intervention, output location and identification, and special wrap-ups.

Inter-Case Dependencies
The Inter-Case Dependencies section identifies how prerequisite test cases are related to the test case in question. As a best practice, you must document this relationship in a way that there is cross-reference between the previous and current test cases.

For example, you might have a test to run that requires a deposit of $1000 before you run another test case that requires a withdrawal. If this condition is not met, then the test will fail because the account might have insufficient funds.

How to Create Test Cases

Procedure Reference: Create Test Cases Using Specification-Based Testing Techniques
To create a test case using specification-based testing techniques:

1. List all possible combinations of input values to test the application.

2. Create partitions to group input conditions.

3. Identify valid and invalid boundaries of each partition.

4. If required, create a graphical representation of inputs or causes of a problem along with their associated outputs or effects.

5. List the components of the test case along with their description in test case specification.

Procedure Reference: Create Test Cases Using Structure-Based Testing Techniques
To create test cases using structure-based testing techniques:

1. Access the source code of the application.

2. Analyze the source code for the flow of the program and coding practices.

3. Select the technique suitable for the code.

4. Create the test case.

5. List the components of the test case along with their description in test case specification.

Discovery Activity 7-3

Creating Test Cases Using Specification-Based Techniques
Scenario:
Your company OGC Inc. has received a new project on developing a web application for online sales of tea in the U.S. As a test team member, you want to create test cases for web application testing. The component for logging in to the application is ready for testing. The requirements for logging in are:

· The Customer name field can accept only 2-64 characters for login.

· A Customer name can be a combination of uppercase and lowercase letters of the alphabet and space.

· For authentication, a customer will enter the account number as the second step of login.

· An Account number is four digits long and the first digit is nonzero.

You decided to apply specification-based techniques to test the login window. You will create two test cases, each using boundary value analysis and the equivalence partitioning technique for the customer name field and account number.

1.

How many valid partitions are possible for the customer name field?

a)
1
b)
2
c)
3
d)
4
2.

How many invalid partitions are possible for the customer name field?
a)
1

b)
2
c)
3
d)
4
3.

The valid boundary values for the number of characters in the customer name field are:
a)
1


b)
2

c)
64
d)
65
4.

The invalid boundary values for the account number are:
a)
1000
b)
9999


c)
0999

d)
10000
5.

Create two test cases using equivalence partitioning to test the functionality of the customer name field.

Answers will vary, but may include:1. Log in using one character that falls in the invalid partition. For example, enter K as the login name. 2. Log in using five characters that fall in the valid partition. For example, enter aVxyZ as the login name.

6.

Create two test cases using the boundary value analysis technique to test the functionality of the customer name field.

Answers will vary, but may include:1. Enter EK as the login name. 2. Log in using 64 characters using a combination of uppercase and lowercase letters.

7.

Create two test cases using equivalence partitioning to test the functionality of the account number field.

Answers will vary, but may include:1. Enter 1234 as the account number. 2. Enter 54321 as the account number.

8.

Create two test cases using the boundary value analysis technique to test the functionality of the account number field.

Answers will vary, but may include:1. Enter 0999 as the account number. 2. Enter 1000 as the account number.

Discovery Activity 7-4

Creating Test Cases Using Structure-Based Techniques
Scenario:
A form on the web application for online sales of tea has a print button. On clicking the print button, you can either preview or print the form. If you choose to print, the application will ask you for colored or black and white print, and then it will ask you for single-side or both-side printout. Two test cases are created for testing the functionality of the print button.

· Test_1: Preview the form.

· Test_2: Take a colored printout with both-side print.

You need to determine if additional test cases are required to achieve 100% statement and decision coverage.

[image: image61]
You can draw a flow diagram to check the statement and decision coverage.

1.

The number of decisions to be covered in the print button functionality is
a)
4
b)
5

c)
6
d)
7
2.

True or False? With tests Test_1 and Test_2, statement coverage is 100%.

a)
True
b)
False
3.

True or False? With tests Test_1 and Test_2, decision coverage is 100%.
a)
True

b)
False
4.

With tests Test_1 and Test_2, decision coverage is
a)
2/6 or 33%
b)
3/6 or 50%

c)
4/6 or 67%
d)
5/6 or 83%
5.

What is the minimum number of test cases required for 100% decision coverage?

a)
1
b)
2
c)
3
d)
4
6.

Create the required test to achieve 100% decision coverage.

Test_3: Take a black and white printout with single-side print.This will cover both of the NO outcomes for colored and both-side print decisions.

Lesson 7 Follow-up
In this lesson, you developed tests to detect bugs in the application. You familiarized yourself with the test development process and components of a test case. This information will help you create effective test cases that can verify the correct functionality of a software application by exposing the maximum number of bugs during the execution and coding phase of the application.

1.

Do you think the test development process helps you in developing test cases? How?

Answers will vary, but may include:

Test analysis and test design phases of the test development process help you develop effective test cases. During test analysis, you determine test objectives, select the test design template, and determine what to test. This helps in creating test cases that cover all of the requirements. During the test design phase, you specify a detailed test strategy in test cases which helps in identifying the maximum defects with minimum effort.

2.

Identify the benefits of test cases in the testing process.

Answers will vary, but may include:

* Test cases ensure that we do not miss out on any functionality or requirements.

* Test cases increase code coverage.

* Properly documented test cases help in retesting if required.

* Test cases help in simulating real end-user scenarios.

Lesson 8
Implementing Tests
Lesson Objectives:

In this lesson, you will implement tests.

You will:

· Create test suites.

· Create test logs.

· Create incident reports.

Introduction

You have created test cases based on the testing requirements of software. Now you may want to execute test cases to identify whether or not the application meets the expected results. In this lesson, you will execute test cases.

While your customer may expect software to behave in accordance with expectations and requirements, as a software tester, you need to identify unexpected results to minimize bugs in the software application. You will discover these bugs if you implement and execute test cases. Therefore, it is very important to execute test cases and create the report to monitor the progress of the testing. In addition, you must investigate if there are any errors in test data, test documents, or in the way tests are being executed. You do this so that you can improve the testing process and perform more effective testing, with the final objective of improving the quality of software before releasing it to the client.

Topic A

Create Test Suites

You have created and identified test cases with the information of what and how to test. Now you need to create test procedures and logically combine them into test suites, wherever possible, to prioritize the execution order of the tests. In this topic, you will create test suites.

To prioritize the execution of test cases, it is important to organize the test cases before executing them. Consider a scenario where you have created multiple test cases to test a software application. Before you execute the test cases, you need to group them and organize the sequence of actions for the execution of a test. Logical grouping of test cases enables you to execute tests efficiently.

You have created and identified test cases with the information of what and how to test. Now you need to create test procedures and logically combine them into test suites, wherever possible, to prioritize the execution order of the tests. In this topic, you will create test suites.

Test Procedures
Definition:
A test procedure is a document that describes the sequence of steps for the execution of a test. It enables you to prioritize the execution order of tests and combines the action steps so that they can be reused for executing different test cases. You can use test procedures against multiple test cases with just one expected result. Test procedures can be used for tests that are intended to run manually rather than using a test execution tool. In addition, test procedures are used to describe instructions to a test execution tool by creating an automation script that is written in a programming language that the tool can interpret.

Example:
Consider a scenario where you need to log in to different applications by entering the user name and password. In addition, you need to execute different test cases to check the functionality of the applications. You can use a test procedure that describes the sequence of steps for logging in to different applications and execute different test cases.

Test Procedures
Definition:
A test procedure is a document that describes the sequence of steps for the execution of a test. It enables you to prioritize the execution order of tests and combines the action steps so that they can be reused for executing different test cases. You can use test procedures against multiple test cases with one expected result. Test procedures can be used for tests that are intended to run manually rather than using a test execution tool. In addition, test procedures are used to describe instructions to a test execution tool by creating an automation script that is written in a programming language that the tool can interpret.

Example:
Example of Test Procedures
Consider a scenario where you need to log in to different applications by entering the user name and password. In addition, you need to execute different test cases to check the functionality of the applications. You can use a test procedure that describes the sequence of steps for logging in to different applications and execute different test cases.

Test Scripts
A test script is a sequence of instructions that you can use to test the functionality of a software application. These instructions can be executed manually or automatically. Using the test script, you can define input that should be supplied to the software application under test and the output that you get. You can create automated test scripts by writing short programs in a programming language using a specially automated functional GUI tool.

[image: image62]
A graphical user interface is a type of user interface that enables you to interact with electronic devices such as computers, media players, and gaming devices.

Components of a Test Procedure Specification
The components of a test procedure specification include:

· A test procedure identifier to identify the test procedure.

· The purpose of the test procedure and reference to any test cases it executes.

· Specific requirements such as hardware, software, and special training that are specific to the test procedure.

· The actual steps for the test procedure.

Components of a Test Procedure Specification
The components of a test procedure specification include a test procedure identifier to identify the test procedure, the purpose of the test procedure and reference to any test cases it executes, specific requirements such as hardware, software, and special training that are specific to the test procedure and procedure steps to describe the actual steps for the test procedure.

Procedure Steps
A procedure step is a test procedure component that describes the actual steps of the procedure. It includes methods, documents for recording test results and incidents. These steps will be associated with test logs and incident reports that result from a test execution. The table lists different procedure steps.

Step

Description

Setup

It describes specific setup requirements before the execution of tests.

Start

It specifies the steps used to start the execution of tests.

Procedure

It describes the steps used to execute tests.

Log

It specifies the results and observations to be recorded during test execution.

Measure

It is used to describe how the results of the execution of tests are to be determined. For example, the results can be measured with a stopwatch or visual determination.

Shut down

It is used to describe actions that are needed to suspend the test when unexpected events occur.

Restart

It is used to describe restart points and specifies the actions that are needed to restart the tests at a certain point if there is a failure or after shutdown.

Stop

It is used to describe actions that are needed to bring tests to an orderly halt.

Wrap up

It is used to describe actions needed to restore the environment.

Contingencies

It specifies plans for handling anomalous events if they occur during the execution of a test procedure.

Test Suites
Definition:
A test suite is a logical collection of test cases that you can use to test a software application. Test suites share data and a common high-level set of objectives and a specific set of behavior types. The group of related test cases in a test suite is often associated with a database and and the test cases are executed simultaneously. In addition, it contains a set of test cases for a software application under test in which the postcondition of one test case is often used as the precondition for the next test case. In addition, a group of test cases may also contain prerequisite steps and descriptions of the following tests.

Example:

Test Suites
Definition:
A test suite is a logical collection of test cases that you can use to test a software application. Test suites share data and a common high-level set of objectives and a specific set of behaviors. The group of related test cases in a test suite is often associated with a database and is executed together. In addition, it contains a set of test cases for a software application under test in which the postcondition of one test case is often used as the precondition for the next test case. In addition, a group of test cases may also contain prerequisite steps and descriptions of the following tests.

Example:
The Test Execution Schedule
The test execution schedule defines the order in which various test procedures and automated test scripts are executed. In addition, it specifies when test procedures are to be carried out and by whom. The test execution schedule could vary depending on newly perceived risks, which can affect the priority of executing a script that addresses that risk. The test execution schedule will take into account such factors as regression tests, prioritization, and technical and logical dependencies between scripts.

How to Create Test Suites

Procedure Reference: Create Test Procedures
To create a test procedure:

1. List the possible test cases created to test the functionality of a software application in a logical sequence.

2. Identify a test procedure identifier.

3. List the relevant details to be recorded in the test procedure:

· Purpose

· Specific requirements

· Test data

· Procedure steps

· Expected result

Procedure Reference: Create Test Suites
To create a test suite:

1. List the test procedures.

2. Logically group the test cases with high-level objectives.

3. Identify the test case in a test suite that contains prerequisite states or steps, and descriptions of subsequent tests.

4. Identify a unique name for the test suite.

Discovery Activity 8-2

Understanding Test Suites
Scenario:
You have been assigned the task of creating a test suite to logically group test cases that have high-level objectives. Before creating the test suite, you would like to validate your knowledge of test suites.

1.

Which statements are true about a test suite?
a)
It describes the actual steps of the procedure for a test case.


b)
It is a logical collection of test cases.

c)
All test cases in test suites have a high-level objective.
d)
It is a sequence of steps that you can use to test a software application under test.
2.

True or False? A test script contains steps to be executed and these steps can be manual or automatic.

a)
True
b)
False
3.

Identify the components of a test procedure specification.


a)
Test Procedure Identifier
b)
Summary


c)
Purpose of the test procedure
d)
Impact

e)
Procedure steps
4.

Identify the factors to be considered for a test execution schedule.


a)
Regression tests


b)
Prioritization
c)
Environment
d)
Specific requirements

e)
Technical and logical dependencies between scripts
Discovery Activity 8-3

Creating a Test Suite
Scenario:
You have created possible test cases for the online shopping portal of OGC Inc. that enables you to shop for tea from a selection of different brands of tea. You need to logically group test cases that have a high-level objective. In addition, you need to document the action steps to prioritize and organize the sequence of actions for the execution of test cases. Possible test cases include:

· Enter a valid user name and password and click the Login button to log in to the online shopping portal.

· Select different brands of tea and click the checkout button in the shopping cart.

· Delete a brand of tea from the shopping cart.

· Enter credit or debit card details and click the Checkout button to purchase the products.

· Select a brand of tea from the catalog.

· Enter a valid user name and password to log in for online payment.

· Enter the feedback in the suggestion box while purchasing tea.

· Update information regarding the billing or delivery address in the checkout page.

· Modify the list for the brand of tea.

1.

From the list of possible test cases, identify the test cases that can be formed into a test suite.

Answers will vary, but may include:1. Enter a valid user name and password and click the Login button to log in to the online shopping portal. 2. Enter a valid user name and password to log in for online payment. 3. Enter credit or debit card details and click the Checkout button to purchase the products.

2.

List the important components of a test procedure specification.

Test Procedure IdentifierPurpose Specific requirements Procedure steps

3.

List the procedure steps for the test case “Enter a valid user name and password and click the Login button to log in to the online shopping portal”.

1. Launch the login page of the portal using the valid given URL.2. Enter a valid user name. 3. Enter a valid password. 4. Click the Login button.

4.

List the procedure steps for the test case “Enter credit or debit card details and click the Checkout button to purchase the products”.

1. Enter the 16 digit card number.2. Enter the expiration date. 3. Enter the 3 digit card number at the back of the card. 4. Click the Submit button to purchase the product.

5.

Identify any specific requirements for online payment in the shopping portal.

Answers will vary, but may include:The online payment should use a secured gateway for confirming transactions.

Topic B

Create Test Logs

You have grouped test cases by creating test suites. Now you need to prepare the environment, execute test cases, and record the results. In this topic, you will create test logs.

To achieve the expected result from the software developed, it is important to execute test cases and continually record the results of test execution, versions of software being tested, and other comments in a log file. Consider a scenario where you need to execute test cases for testing different versions of a software application. While executing test cases, you log important information regarding the order of test case execution and the test status in a document. This document enables you to maintain an audit trail of all test execution activities and observations, such as which tests were performed against which version of the software, and which software versions reported defects.

You have grouped test cases by creating test suites. Now you need to prepare the environment, execute test cases, and record the results. In this topic, you will create test logs.

Test Logs
A test log is a document that records relevant details about the execution of one or more test cases in chronological order. It is used by the testing team to record details of test cases that have been executed, the order in which test cases have been executed, and the results of test cases. Using a test log, you can record relevant information such as the test log identifier, hardware and software, test description, execution description, date and time of execution, mapping details, and anomalous events. You use the test case ID to specify the order of the test case execution. The test log also provides an audit trail of test cases executed by different users.

In addition, a test log specifies the status of a test case execution, which is either pass, fail, or blocked. When the actual result matches the expected result, the test case is said to have passed. However, if there is a discrepancy between the actual result and the expected result, then the test case is said to have failed. In addition, the test status of a test case can also be blocked if preferable conditions are not available to test specific functionality, such as dependency on specific software or hardware. Besides checking the progress of a test case, the test log provides important information about the incident that caused the test case to fail by logging the identifier of the incident. Finally, test logs record events that you want to share among team members or use in the project at a later time. Test logs become extremely important if the project is large and geographically separated.

[image: image64]
An incident is a discrepancy or defect in code that is analyzed in order to establish its cause.

Figure 8-1: A sample use of a test log.

Components of Test Logs
The components of a test log represent the details of the output that results from the execution of test cases. These components include:

· A test log identifier to identify the test log.

· Test description, which describes all information about the items being tested.

· Activity and event entries during the execution of test cases.

· The name of the person who executes the test case.

· The date of testing by a user.

· General comments about the execution of a test case.

Components of Test Logs
The components of a test log represent the details of the output that results from the execution of test cases. These components include a test log identifier, test description, which includes information about the items being tested and activity and event entries during the execution of test cases. Also included in the test log are the name of the person who executed the test case, the date of testing by the user, and general comments about the execution of a test case.

Activity and Event Entries
Activity and event entries are a component of the test log that you can use to record different activities related to the execution of test cases. The entries include:

· Execution description.

· The procedure or actual result that you observe when you execute action steps in the test case.

· Pass, fail, or block status of a test case.

· The environment that is specific to the test case under execution.

· Anomalous events.

· The incident report identifier.

Activity and Event Entries
Activity and event entries are a component of the test log that you can use to record different activities related to the execution of test cases. The entries include execution description, the procedure or actual result that you observe when you execute action steps in the test case, pass, fail, or block status of a test case, the environment that is specific to the test case under execution, anomalous events and the incident report identifier.

Actual Results
An actual result is the behavior or response of a software application that you observe when you execute action steps in the test case. Although it is a component of the test case, the actual result is recorded during the execution of a test case. You can compare the actual result with the expected result to validate the behavior of the application. However, the actual behavior of the software application during the execution of a test case may or may not match the expected behavior of the software application that is documented in the test case. If the actual result matches the expected result, the test is considered successful. However, if there is a difference between the actual result and the expected result, the test is considered unsuccessful.

Test Status
Test status is a component of the test log that specifies whether a test case has passed or failed. The status of the test case is recorded as pass when there are no bugs in the software application. However, if the software application does have bugs, the test status is marked fail. The test status of a test case can also be marked blocked if the test case is used to test the functionality of the application that is not present in it. In addition, a test case can also be blocked if preferable conditions are not available to test functionality such as dependency on specific software or hardware.

Anomalous Events
Anomalous events are occurrences that happen before and after an unexpected event. You can also record the circumstances responsible for the failure to complete a test procedure or the inability to begin the execution of a test procedure as anomalous events. Consider an example where you click the Submit button of an application to display the summary of a report. The report is generated, but the response takes a lot of time. A second attempt produces the same prolonged response. Similarly, a power or software failure in the application is an example of the circumstances for the failure of a test procedure.

Incident Report Identifiers
An incident report identifier is a unique identifier of each incident report generated during test execution. Whenever the actual result is different from the expected result in a test case, an incident is said to have been identified. Incidents can be a defect in code, in specified test data, or in the test document, or they could be errors in the way the test case was executed. You can specify a unique identifier for an incident to analyze it in order to establish its cause and ultimately fix it.

How to Create Test Logs

Procedure Reference: Create Test Logs
To create a test log:

1. Identify test procedures and test suites to test the functionality of a software application.

2. Execute test cases using the input values mentioned in test cases.

3. Identify a test log identifier for the document that you will use to log the details of test case execution.

4. Record relevant details about the execution of one or more test cases in chronological order:

· Test case ID

· Test description

· Activity and event entries

· Tested by

· Date tested

· Status

· Defect ID

· Comments

Discovery Activity 8-4

Understanding Test Logs
Scenario:
You have been assigned the task of creating a test log to record the details of test case execution. Before creating the test log, you would like to validate your knowledge of test logs.

1.

True or False? A test log can only have a pass or fail state of an executed test case.
a)
True

b)
False
2.

Which statements are true about a test log?
a)
It consists of relevant details of incidents such as actual results, expected results, and the date and time.


b)
It is a document that records relevant details about the execution of one or more test cases in chronological order.

c)
It specifies the status of a test case execution, which is either pass, fail, or blocked.
d)
It provides the overall testing status of an application across various levels.
3.

Identify the components that are included in the activity and event entries of a test log.


a)
Execution description
b)
Test description


c)
Pass or fail status of a test case
d)
The date of testing

e)
Incident report identifier
4.

True or False? Each passed test case should have its corresponding defect ID.
a)
True

b)
False
Discovery Activity 8-5

Creating Test Logs
Scenario:
You have created test suites to logically group test cases for the online shopping portal of OGC Inc. You need to execute the test cases and log important information regarding the order of test case execution and the test status. In addition, you need to check the progress of test cases by logging the incident identifiers that caused the test cases to fail.

Possible test cases include:

· Enter a valid user name and password and click the Login button to log in to the online shopping portal.

· Select different brands of tea and click the Checkout button in the shopping cart.

· Delete a brand of tea from the shopping cart.

· Enter credit or debit card details and click the Checkout button to purchase the products.

· Select a brand of tea from the catalog.

· Enter a valid user name and password to log in for online payment.

· Enter the feedback in the suggestion box while purchasing tea.

· Update information regarding the billing or delivery address on the checkout page.

· Modify the list for the brand of tea.

1.

Log the information for the test cases to log in to the online shopping portal.

Answers will vary, but may include:Test ID: test_1; Test Description: Enter a valid user name and password and click the Login button to log in to the online shopping portal; Test Status: Pass; Tested By: user1; Date Tested: 05/01/2009 Test ID: test_5; Test Description: Enter a valid user name and password to log in for online payment; Test Status: Pass; Tested By: user1; Date Tested: 05/01/2009

2.

Log the information for the test case to enter credit or debit card details and click the Checkout button to purchase the products.

Answers will vary, but may include:Test ID: test_4; Test Description: Enter the credit or debit card details and click the Checkout button to purchase the products; Test Status: Pass; Tested By: user1; Date Tested: 05/01/2009

3.

Log the information for the test cases to select and delete a brand of tea in the shopping portal.

Answers will vary, but may include:Test ID: test_2; Test Description: Select different brands of tea and click the checkout button in the shopping cart; Test Status: Fail; Incident Identifier: defect_001; Tested By: user2; Date Tested: 05/01/2009 Test ID: test_3; Test Description: Delete a brand of tea from the shopping cart; Test Status: Fail; Incident Identifier: defect_002; Tested By: user2; Date Tested: 05/01/2009 Test ID: test_5; Test Description: Select a brand of tea from the catalog; Test Status: Pass; Tested By: user2; Date Tested: 05/01/2009

4.

Log the information for the test case to enter feedback in the suggestion box.

Answers will vary, but may include:Test ID: test_7; Test Description: Enter the feedback in the suggestion box while purchasing tea; Test Status: Pass; Tested By: user1; Date Tested: 05/01/2009

5.

Log the information for the test case to update the billing or delivery address on the checkout page.

Answers will vary, but may include:Test ID: test_8; Test Description: Update information regarding the billing or delivery address on the checkout page; Test Status: Fail; Incident Identifier: defect_003; Tested By: user1; Date Tested: 05/01/2009

6.

What are the possibilities of executing test case test_9?

Test case test_9 will not be executed. However, this test case will be blocked as the permission to modify the list lies with the administrator. The test log information includes: Test ID: test_9; Test Description: Modify the list for the brand of tea; Test Status: Blocked; Tested By: user1; Date Tested: 05/01/2009; Comments: An administrator with a valid user name and password can modify the details of tea in the portal.
Topic C

Create Incident Reports

You know how to create a test log while executing test cases. Now you may need to document the incidents reported in a test log for closure. In this topic, you will create incident reports.

Consider a scenario where you need to fix several incidents in a software application that was recently tested. You have limited time and therefore would like to fix incidents based on the levels of priority and severity. Incident reports enable developers to easily identify, isolate, and correct the defects, as required. A systematic, well written, and to the point incident reported in clear steps has greater chance to get fixed than a critical but a vaguely reported incident. Therefore, creating an incident report will help to prioritize incidents to be fixed and maintain detailed records of incidents.

You know how to create a test log while executing test cases. Now you may need to document the incidents reported in a test log for closure. In this topic, you will create incident reports.

Incidents
Definition:
Incidents are events that occur during the testing process and that require investigation. These incidents can cause great inconvenience to the user of the program. You report discrepancies between actual and expected results as incidents. Incidents can be a defect in the functionality of the application, a defect in code, a failure in the test environment, or a mistake in the execution of test activities.

While some incidents may have a minor effect on the functionality of the application and thus lie undetected for a long time, others may cause the application to crash or freeze. You need to log and analyze these incidents to gather details about the cause of the defect and report additional information about it. This information enables you to differentiate between problems in the software application and track incidents from the actual discovery to the correction and confirmation of the solution to fix the incident. In order to manage all incidents to completion, you need to follow a process and rules for classification of the incidents.

Example:
Consider a scenario where you find a spelling mistake in a Help file of a software application a few months before its release. You analyze the incident and gather additional information about the bug that caused this problem in the software application. After analyzing the incident, you come to the conclusion that the defect in the functionality of the application was caused by a minor bug, which is likely to be fixed. However, if the same bug was detected a few hours before the release of the software application, the bug would not have been fixed.

[image: image66]
It is less likely to fix a bug that is found later in the testing process. This is applicable for a bug that is very minor. As a best practice, attaching a screenshot where unexpected behavior occurred helps a lot to replicate and understand the bug better.

Incidents
Definition:
Incidents are events that occur during the testing process that require investigation. These incidents can cause great inconvenience to the user of the program. You report discrepancies between actual and expected results as incidents. Incidents can be a defect in the functionality of the application, a defect in the code, a failure in the test environment, or a mistake in the execution of test activities.

While some incidents may have a minor effect on the functionality of the application and thus lie undetected for a long time, others may cause the application to crash or freeze. You need to log and analyze these incidents to gather details about the cause of the defect and report additional information about it. This information enables you to differentiate between problems in the software application and track incidents from the actual discovery to the correction and confirmation of the solution to fix the incident. In order to manage all incidents to completion, you need to follow a process and rules for classification of the incidents.

Example:
Example of Incidents
Consider a scenario where you find a spelling mistake in a Help file of a software application a few months before its release. You analyze the incident and gather additional information about the bug that caused this problem in the software application. After analyzing the incident, you come to the conclusion that the defect in the functionality of the application was caused by a minor bug, which is likely to be fixed. However, if the same bug was detected a few hours before the release of the software application, the bug would not have been fixed.

[image: image67]
It is less likely to fix a bug that is found later in the testing process. This is applicable for a bug that is very minor.

Incident Resolution
You can fix the bug in the testing schedule if the bug is detected earlier in the testing process. In many cases, the decision to fix a bug lies solely with the project manager, while in some cases, the decision lies with programmers. You need to provide the project manager with information that describes the bug. The description of the bug is generally reviewed and determined by a group of people, who decide whether the bug will be fixed. Most of the bugs are fixed based on their impact on the software application, while some of them are not fixed until the next release of the software application. The risk of fixing the bug increases over time and adds to the pressure on the decision-making process.

The Incident Life Cycle
In a software development process, each incident has a life cycle. Unless an incident goes through its life cycle and attains different states, it cannot be closed. The table lists various states of the incident life cycle.

State

Description

UNCONFIRMED

In this state, a new incident is added to the database, which is not validated as true. The user with the permission to confirm the incident changes the state of the incident to NEW.

NEW

In this state, a new incident with a confirmed status is added to the database. This incident is sent to the test lead for confirmation that the bug is valid. When the bug is posted for the first time, its state will be NEW. This means that the bug is not yet approved. Incidents in this stage may be accepted and become ASSIGNED or passed on to someone else and remain NEW, or it can be resolved and marked RESOLVED.

OPEN

In this state, the test lead approves that the incident is genuine and changes the state of the incident to OPEN.

ASSIGNED

In this state, the test lead assigns the open incident to the corresponding developer and changes the status of the incident to ASSIGNED.

RESOLVED

In this state, the person assigned to fix the incident makes necessary changes in code and verifies the changes. After fixing the incident, the developer changes the status of the incident to RESOLVED and passes it to the testing team for retesting. Sometimes, the software developer can mark the incident REJECTED, if the system is working according to the required specifications and the incident has occurred due to some misinterpretation.

In some cases, the software developer may defer the incident to be fixed in future releases of the software application due to low priority of the incident and lack of time for the release of the software application. In this case, the state of the incident is marked DEFERRED.

VERIFIED

In this state, the software tester tests the incident. If the incident is not present in the software, he approves that the incident is fixed and agrees that appropriate resolution has been taken for the incident. Finally, the software tester changes the status of the incident to VERIFIED. However, after retesting the software application, if the software tester finds that the same incident is detected or if the software application behaves in the same faulty way, then the software tester changes the status of the incident to REOPENED and sends it back to the software developer to take appropriate action.

CLOSED

In this stage, the software tester marks the incident CLOSED after the incident is verified and its resolution is considered appropriate.

Figure 8-2: The different stages of an incident life cycle.

Types of Incident Resolution
Open incidents do not have a resolution each. However, all other incidents that are marked resolved each have a resolution. Some of the resolutions for incidents include:

· FIXED

· WONTFIX

· LATER

· REMIND

· DUPLICATE

· INCOMPLETE

· NOTABUG

· INVALID

Types of Incident Resolution
All open incidents do not have a resolution. However, all other incidents that are marked as resolved have a resolution. Some of the resolutions for incidents include FIXED, WONTFIX, LATER, REMIND, DUPLICATE, INCOMPLETE, NOTABUG and INVALID.

Incident Logging
You need to log discrepancies between actual and expected outcomes as incidents. Logging incidents later becomes difficult due to the risk of new incidents that might cause the testing process to be postponed indefinitely. Incidents may be raised during development, review, testing, or use of a software product. An essential step in managing incidents correctly is to report them by logging them from various sources.

Incident Reports
Definition:
An incident report is a document that records the description of a certain situation, behavior, or event that occurs during the testing process and that requires further investigation. It consists of relevant details of the incident such as actual results, expected results, the date and time of the occurrence of the incident, and any supporting evidence that will aid in resolving the incident. In addition, the report describes the actual or potential impact caused by the incident. Using the incident report, you can generate detailed information about the behavior and defect of the software application.

An incident report serves as a means of communication between the tester and the software developer. Using this report, the testing team informs the software development team about the defects in the software being developed and tested. The software development team can use this information to track the quality of the application and take corrective measures to fix the incident. The knowledge of all important items to be included in an incident report enables you to create an effective incident report, which is helpful for both the software development and testing teams. The report also enables you to analyze the trends in aggregate defect data so that you can identify a set of problems or tests and report the overall level of system quality. Finally, you can analyze the information in an incident report and use it in other projects to improve the test process.

Example:

Incident Reports
Definition:
An incident report is a document that records the description of a certain situation, behavior, or event that occurs during the testing process and that requires further investigation. It consists of relevant details of the incident such as actual results, expected results, date and time of the occurrence of the incident, and any supporting evidence that will aid in resolving the incident. In addition, the report describes the actual or potential impact caused by the incident. Using the incident report, you can generate detailed information about the behavior and defect of the software application.

An incident report serves as a means of communication between the tester and the software developer. Using this report, the testing team informs the software development team about the defects in the software being developed and tested. The software development team can use this information to track the quality of the application and take corrective measures to fix the incident. The knowledge of all important items to be included in an incident report enables you to create an effective incident report, which is helpful for both the software development and testing teams. The report also enables you to analyze the trends in aggregate defect data so that you can identify a set of problems or tests and report the overall level of system quality. Finally, you can analyze the information in an incident report and use it in other projects to improve the test process.

Example:
Merits of Incident Reports
An incident report is a mechanism for recording incidents, defects, and their status. It enables you to:

· Provide software developers and other stakeholders with relevant feedback about the problem in the software application.

· Isolate and correct incidents that cause the problem in the application.

· Provide test leads with a means of tracking the quality of the application under test and the progress of the test process.

· Provide ideas for improvement in the test process.

Merits of Incident Reports
A test incident report is a mechanism for recording incidents, defects, and their status. It provides software developers and other stakeholders with relevant feedback about the problem in the software application, and isolates and corrects incidents that cause the problem in the application. It also provides test leads with a means of tracking the quality of the application under test, and the progress of the test process besides providing them with ideas for improvement in the test process.

Components of Incident Reports
A detailed incident report includes a set of standard components that enable you to provide a clear description about the cause of the defect and report additional information about the incident. These components include:

· An incident report identifier to identify the incident report.

· A summary of details regarding the actual incident including references of the test case specification, test logs, and test procedure that revealed the problem.

· A description of the incident to enable reproduction and resolution.

· The impact of the incident on users and stakeholders.

· Severity of the impact on the system.

· Priority to fix incidents.

· Status of incidents.

· Names of persons who found the incident.

· Persons responsible for resolving the incident.

· Change history, such as the sequence of actions taken by project team members with respect to the incident to isolate, repair, and confirm it as fixed.

· Global issues, such as other areas that may be affected by a change resulting from the incident.

· Conclusions, recommendations, and approval regarding the incidents.

[image: image70]
The incident report identifier is used to assist in coordinating the versions of software within configuration management. It is also used to track the progress of the incident resolution. All identified incidents should have a reference to a test case. If an incident is discovered using ad-hoc testing, then a test case should be written that would have found the incident.

Components of Incident Reports
A detailed incident report includes a set of standard components that enable you to provide a clear description about the cause of the defect and report on additional information about the incident. These components include an identifier to identify the incident report as well as a summary of details regarding the actual incident including references to the test case specification, test logs, and the test procedure that revealed the problem. It also incorporates a description of the incident to enable reproduction and resolution of the incident, the impact of the incident on users and stakeholders alike, severity of the impact on the system, priority to fix incidents, status of incidents, and names of persons who found the incident and who are responsible for resolving the incident. Moreover, it includes what is called change history—the sequence of actions taken by project team members with respect to the incident to isolate, repair, and confirm it as fixed. Finally it describes global issues, such as other areas that may be affected by a change resulting from the incident and any conclusions, recommendations, and approvals regarding the incidents.

[image: image71]
The incident report identifier is used to assist in coordinating the versions of software within configuration management. It is also used to track the progress of the incident resolution.

The IEEE Incident Report Template
You can use a standard template provided by IEEE for reporting incidents. The template provides a formal mechanism for recording incidents, defects, and their status during the testing of a software application. The important sections of the IEEE incident report template include:

· Incident report identifier

· Summary

· Incident Description

· Inputs

· Expected results

· Actual results

· Anomalies

· Date and time

· Procedure step

· Attempts to repeat

· Testers

· Observers

· Impact

· Severity

· Priority

Figure 8-3: A sample use of the IEEE incident report template.

The IEEE Incident Report Template
You can use a standard template provided by IEEE for reporting incidents. The template provides a formal mechanism for recording incidents, defects, and their status during the testing of a software application.

Sections of the IEEE Incident Report Template
The important sections of the IEEE incident report template include:

· An Incident Report Identifier

· A Summary

· Incident Description

· Inputs

· Expected Results

· Actual Results

· Anomalies

· Date and Time

· Procedure Step

· Attempts to Repeat

· Testers

· Observers

· Impact

· Severity

· Priority

Summaries
A summary is a component of the incident report that provides a description about the actual incident. This information not only enables users to trace the origin of the incident but also provides references with relevant supporting information such as references to:

· The test procedure that is used to find the incident.

· Test case specifications that provide information to repeat the incident.

· Test logs that list the actual execution of test cases and procedures.

· Supporting material in the form of trace logs, memory dumps, and maps.

Summaries
A summary is a component of a test incident report that provides details about an actual incident. This information not only enables users to trace the origin of the incident but also provides references with relevant supporting information such as the test procedure that finds the incident, test case specifications that provide information on repeating the incident, and test logs that list the actual execution of test cases. In addition, a summary includes procedures and supporting materials in the form of trace logs, memory dumps, and maps.

Incident Description
Incident description is a component of the incident report that provides maximum details about an incident in the absence of references to the incident. The details about incidents enable you to analyze the incident report better. The table lists the components of incident description.

Section Heading

Description

Inputs

It records the types of inputs used in the testing process. Some of the input types include files, keystrokes, and mouse clicks.

Expected results

It records the description of the expected behavior of the software application. It is derived from the test case, which discovered the incident.

Actual Results

It records the actual results while testing the software application.

Anomalies

It records the reasons for the difference between actual and expected results. It also records other significant data such as unusually light or heavy load on the system.

Date and time

It records the date and time of the occurrence of the incident.

Procedure step

It records the step in which the incident occurred. Recording the procedure step is helpful in case of long and complex test procedures.

Environment

It records hardware and software resources that were used in the test process. Some of the environments include the system test environment or acceptance test environment.

Attempts to repeat

It records the number of attempts made to repeat tests.

Testers

It records the names of persons who ran the test.

Observers

It records the names of persons who have the knowledge of the situation.

Impact
Impact is a component of the incident report that determines the actual effect of the incident on the software application and its users. It determines the levels of complexity that an incident can cause to the software application. Based on the levels of complexity, you can set the priority while resolving the incident. The initial rating of the incident is assigned by the person who creates the incident report. However, you need to get an initial assessment of the effect as soon it is documented. This will help you fix incidents that have the potential to become critical defects. Therefore, you need to follow a standard method to assess the effect of incidents. When an incident occurs, you describe its effect by assigning a severity and priority level to it.

Consider an example where an incident has occurred in an application that can critically corrupt the data on a computer. This incident is more severe than an incident with a mistake in the setup instructions of the software. However, the data corruption occurs so rarely that a user is least likely to encounter it. On the other hand, a misspelling in the setup instructions of the software application causes users to call for assistance frequently. In this case, you need to decide what incidents need to be fixed first. Finally, you rate the incidents based on the severity level and set priority while fixing them.

Impact
Impact is a component of the incident report that determines the actual effect of the incident on the software application and its user. It determines the levels of complexity that an incident can cause to the software application. Based on the levels of complexity, you can set the priority while resolving the incident. The initial rating of the incident is assigned by the person who creates the incident report. However, you need to get an initial assessment of the effect as soon as it is documented. This will help you fix incidents that have the potential to become critical defects. Therefore, you need to follow a standard method to assess the effect of incidents. When an incident occurs, you describe its effect by assigning a severity and priority level to it.

Example of Impact
Consider an example where an incident has occurred in an application that can critically corrupt the data on the computer. This incident is more severe than an incident with a misspelling in the setup instructions of the software. However, the data corruption occurs so rarely that a user is least likely to encounter it. On the other hand, a misspelling in the setup instructions of the software application causes users to call for assistance frequently. In this case, you need to decide what incidents need to be fixed first. Finally, you rate the incidents based on the severity level and set priority while fixing them.

Severity
Severity is a method of rating the potential impact of an incident on the software application and on users or stakeholders. It indicates the effect of an incident and the likelihood of the degree of its impact when it is encountered. The table lists some of the levels of severity.

Level

Description

1 (Critical)

Critical incidents are responsible for non-functioning and failure of the software application. Some of the critical incidents include: system crash, data loss, data corruption, and breach of security.

2 (Major)

Incidents with a major severity level can cause severe problems to the application and users. However, there is a possible workaround to resolve this incident. Some examples of incidents with a major severity level include: operational errors, unexpected fatal errors, incorrect results, and loss of functionality.

3 (Medium)

Incidents with a medium severity level cause malfunctioning of the application due to some minor problems such as incorrect data input, misspelling, and improper layout of the user interface.

4 (Minor)

Incidents with a minor or low severity level do not impact the functionality or usability of the application. However, these incidents are not according to requirements and design specifications, so they can be a suggestion.

Priority
Priority is a method of rating the levels of prioritization to fix incidents. It indicates the emphasis that you need to place on fixing an incident and the urgency to fix the incident. The table lists some of the levels of priority.

Level

Description

1 (Immediate or High)

It indicates that incidents must be fixed as soon as possible. It also enables you to block further testing.

2 (Delayed)

It specifies that the incident must be fixed before the software product is released to the client.

3 (Deferred)

It denotes that the incident should be fixed based on the availability of time.

4 (Least)

It indicates that the incident is least likely to be fixed. However, the software can be released with this incident.

[image: image73]
Some organizations use up to ten levels of severity and priority. No matter how many levels you use, the goals remain the same.

An Example of Severity and Priority
Severity and priority are important information about an incident that developers use to decide the order of fixing incidents. If developers are assigned 25 incidents, they should probably start working on the incident that has priority level 1 instead of fixing the easiest incidents. Consider an incident in a software application that can corrupt data on your computer. Since the incident occurs very rarely, you might rate the incident with severity level 1 and priority level 3. The specified priority level for this incident indicates that the incident will be fixed based on availability of time.

A mistake in the setup instructions of the software application that causes users to call for assistance can be classified with a severity level 3 and priority level 2. This level of priority indicates that the spelling error in the setup instructions for the application should be fixed before the release of the software application.

[image: image74]
The priority of an incident can change over the course of a project. An incident that you labeled as priority level 2 could be changed to priority level 4 due to lack of time.

[image: image75]
Incident reporting can be done manually or using a defect management tool depending on the test environment and tools chosen during the test planning phase. It may vary with organizations but the intent remains the same.

How to Create Incident Reports

Procedure Reference: Create Test Incident Reports
To create a test incident report:

1. Record the relevant details of defects for failed test cases.

2. Finalize an incident report identifier to generate the test incident report and the level of testing at which the incident occurred.

3. Analyze the details of incidents.

4. Record relevant details about the incidents in the incident report:

· Summary

· Incident description

· Impact

Discovery Activity 8-6

Understanding Incident Reports
Scenario:
You have been assigned the task of creating an incident report to record the details of incidents. Before creating the incident report, you would like to validate your knowledge of incident reports.

1.

Identify the component of the test incident report that enables users to trace the origin of incidents and provides references.
a)
Incident Description

b)
Summary
c)
Impact
d)
Incident Report Identifier
2.

Which stage of the incident life cycle enables you to reopen the incident?
a)
ASSIGNED
b)
RESOLVED
c)
UNCONFIRMED

d)
VERIFIED
3.

Identify the components of the incident description in the IEEE incident report template.


a)
Expected Results
b)
Summary


c)
Inputs

d)
Procedure Step
e)
Impact
4.

A user cannot log in to a software application. Identify the severity level of this defect.

a)
Critical
b)
Major
c)
Medium
d)
Minor
5.

What would be the priority level of the defect if a user cannot log in to the system?
a)
Delayed
b)
Low

c)
High
d)
Deferred
6.

What will be the severity and priority if a software application cannot support more than the specified number of users?
a)
Critical/low
b)
Major/high
c)
Critical/high

d)
Major/Deferred
Discovery Activity 8-7

Creating an Incident Report
Data Files:
· test_log

Setup:
Before You Begin:

From the C:\085046Data\Implementing_Tests folder, open the test_log.doc file.

Scenario:
You have created a test log to record relevant details about the execution of test cases for the online shopping portal of OGC Inc. You need to create an incident report for the incident raised during the execution of test cases. In addition, you need to rate incidents based on the potential impact caused by the incident and the status of the incidents as they go through the incident life cycle for corrective actions.

1.

Write the incident identifier for the incidents that occurred due to a failed test case in the shopping cart.

defect_001 and defect_002
2.

List the mandatory components for incidents.

Incident report identifierSummary Incident description Impact — Priority and Severity Assigned to Raised by

3.

Which team will resolve incidents defect_001, defect_002, and defect_003?

The development team can modify the code and fix the incidents.
4.

What will be the severity and priority level of the incident defect_003?

Severity Level— MajorPriority Level— High

5.

For the incident identifier defect_001, record the details of mandatory components.

Answers will vary but may include:Summary: The Shopping cart is not updated. Test Description: While selecting different brands of tea and proceeding to check out in the shopping cart, the quantity and price are not updated. Priority: High Severity: Major Assigned to: Development team Raised by: user2

Optional Activity 8-8

Reporting Defects Using Bugzilla
Setup:
Before You Begin:

Ensure that you have an email account.

Scenario:
You have manually created incident reports from the test log for the online shopping portal of OGC Inc. You need to report defects for different software projects using Bugzilla. In addition, you need to submit the bug report to the Bugzilla server.

What You Do
How You Do It
1.

Launch the website and create a new user account.

[image: image76]
A confirmation email containing a link to continue creating an account will be sent to your email immediately when you click the Send button. The link will expire if an account is not created within 3 days.

[image: image77]
When you click the above link, it will open the registration page.

[image: image78]
A confirmation message for the account creation will appear on the home page of Bugzilla.

a.

In the Internet Explorer window, in the address bar, enter the address https://landfill.bugzilla.org/bugzilla-tip/

b.

To create a new account, click the Open a New Account icon.

c.

In the Email address text box, enter a valid email address.

d.

Click the Send button.

e.

Log in to your email account and click the hyperlink. for the request of a new account.

f.

In the (OPTIONAL) Real Name text box, enter your name.

g.

In the Type your password text box, enter a password.

h.

In the Confirm your password text box, enter the password again.

i.

Click the Send button.

j.

Click the Log In link.

2.

Log in to the website

a.

In the login text box, enter your email address.

b.

In the password text box, enter the password you specified earlier.

c.

Click the Log in button.

d.

Click the Home link.

3.

Report a bug.

a.

Click the File a Bug icon.

b.

Click the WorldControl link.

c.

If necessary, in the WorldControl page, click the Hide Advanced Fields link.

d.

In the Component list box, select EconomicControl.

e.

In the Severity drop-down box, select major.

f.

In the OS drop-down list, verify whether Windows XP is selected.

g.

In the Summary text box, enter Redirection of funds not working.

h.

In the Description text box, enter When a user logs in to redirect the funds, the system displays an error.

i.

To submit the defect, click the Commit button.

Activity 8-9

Reporting Defects Using Bugzilla
Setup:
Before You Begin:

Ensure that you have an email account.

Scenario:
You have manually created incident reports from the test log for the online shopping portal of OGC Inc. You need to report defects for different software projects using Bugzilla. In addition, you need to submit the bug report to the Bugzilla server.

What You Do
How You Do It
1.

Launch the website and create a new user account.

[image: image79]
A confirmation email containing a link to continue creating an account will be sent to your email immediately when you click the Send button. The link will expire if an account is not created within 3 days.

[image: image80]
When you click the above link, it will open the registration page.

[image: image81]
A confirmation message for the account creation will appear on the home page of Bugzilla.

a.

In the Internet Explorer window, in the address bar, enter the address http://landfill.bugzilla.org/bugzilla-tip/

b.

To create a new account, click the Open a New Account icon.

c.

In the Email address text box, enter a valid email address.

e.

Click the Send button.

f.

Log in to your email account and click the hyperlink to request a new account.

g.

In the (OPTIONAL) Real Name text box, enter your name.

i.

In the Type your password text box, enter a password.

k.

In the Confirm your password text box, enter the password again.

m.

Click the Send button.

n.

Click the Log In link.

2.

Log in to the website.

a.

In the login text box, enter your email address.

c.

In the password text box, enter the password you specified earlier.

e.

Click the Log in button.

f.

Click the Home link.

3.

Report a bug.

a.

Click the File a Bug icon.

b.

Click the WorldControl link.

c.

If necessary, in the WorldControl page, click the Hide Advanced Fields link.

d.

In the Component list box, select EconomicControl.

e.

In the Severity drop-down box, select major.

f.

In the OS drop-down list, verify whether Windows XP is selected.

h.

In the Summary text box, enter Redirection of funds not working.

i.

In the Description text box, enter When a user logs in to redirect the funds, the system displays an error.

j.

To submit the defect, click the Commit button.

Lesson 8 Follow-up
In this lesson, you implemented tests on the software application. You created test suites and executed test cases to identify whether or not the application meets expected results. In addition, you created test logs to record details of test cases that have been executed. Finally, you created incident reports to record the description of a certain situation, behavior, or event that occurs during the testing process and that requires further investigation.

1.

How do you log information about the execution of test cases in your organization?

Answers will vary, but may include:

Information about test case execution is generally recorded in Word documents or Excel sheets. Sometimes, the information is also logged in a specific document, which is based on a specified template or format.

2.

Identify the significance of using incident reports in the testing process.

Answers will vary, but may include:

Incident reports enable you to identify the severity and priority levels of incidents. In addition, they also help track the progress of incidents from their inception to closure.

Lesson 9
Reporting on Tests and Performing Closure Activities
Lesson Objectives:

In this lesson, you will report tests and perform test closure activities.

You will:

· Identify test metrics and measurements.

· Create test summary reports.

· Perform test closure activities.

Introduction

You have created test logs and incident reports by executing test cases. The next step that is usually performed in the standard testing process is to create a test summary report and perform test closure activities. In this lesson, you will report tests and perform test closure activities.

To complete a test process successfully, it is important to create a summary of tests and perform closure activities. Consider a scenario where you have executed test cases and reported on incidents. You need to create a summary of the test outcome to communicate with stakeholders that the testing of a software product is complete. After summarizing the test activities, you need to consolidate the experience gained during the testing process. This enables the project and testing teams to evaluate and analyze various testing processes and lessons learned for implementation in future releases and projects.

Topic A

Identify Test Metrics and Measurements

You executed tests and logged the details of test execution. In addition, you also created incident reports to record the relevant details about the incidents. Now you need to measure the quality of software. In this topic, you will identify test metrics and measurements to monitor progress of test execution and measure the quality of software.

In order to develop quality software, you need to analyze the test execution progress and log important information to measure the quality of software. Consider a scenario where you need to create a test summary report from the information recorded in a test log. Before creating the summary report, you need to perform qualitative and quantitative analysis of software. The analysis of software quality enables you to measure the quality of software, monitor the progress of test execution, and report the results of test execution. In addition, it enables you to manage, control, and optimize the testing process.

Metrics
Definition:
Metrics are documents that you can use to measure the quality of software. Metrics are used to monitor the progress of test execution and report the results of the test execution. In addition, they help in validating test activities against the planned schedule and budget. Metrics, also called test metrics, can be created manually or by using tools. You can use predefined templates or create your own customized metrics for monitoring and reporting on tests.

Example:
You have executed test cases on a module and found more than expected defects. Before testing a similar module, you can create a test metric for defects found to ensure that relevant changes can be incorporated into the test strategy if required. You need to create two defect metrics, one for the number of defects versus category and another for the number of defects versus severity. These metrics will help you validate if the desired quality is achieved and identify the associated risks.

Types of Test Metrics Information
Some of the information you can capture in test metrics includes:

· Dates of testing activities.

· Information about defects, such as defect density, defects found and fixed, defects found and not fixed, and failure rate.

· Information about test execution, such as the number of test cases executed, number of test cases not executed, test cases passed, and test cases failed.

· Effort required in preparing the test cases, test environment, and actual time taken.

Types of Test Metrics Information
Some of the information you can capture in test metrics includes dates of testing activities, information about defects such as defect density, defects found and fixed, defects found and not fixed, and the failure rate, information about test execution such as the number of test cases executed, number of test cases not executed, test cases passed, and test cases failed, and effort required in preparing test cases and the test environment and actual time taken.

Measurements in Software Testing
Definition:
Measurement is a technique of assigning a number or category to measure the attribute of an entity. Using this technique, you can perform qualitative and quantitative analysis of software. Measurement can be done manually or using a tool to effectively manage testing activities. Measurement starts with collecting data and then creating metrics and charts by arranging the data in order. Information collected by using the measurement technique helps to find the cause of defects and their effect on software quality. Based on measurements, you can also change your test planning for future testing, if required.

Example:

Measurements in Software Testing
Definition:
Measurement is a technique for assigning a number or category to measure the attribute of an entity. Using this technique, you can perform qualitative and quantitative analysis of software quality. Measurement can be done manually or using a tool to effectively manage testing activities. Measurement starts with collecting data and then creating metrics and charts by arranging the data in order. Information collected by using the measurement technique helps to find the cause of defects and their effect on software quality. Based on measurements, you can also change your test planning for future testing, if required.

Example:
Defect Density
Defect density is the ratio between the weighted number of defects found in a component or system and size of the component or system. The size can be measured in thousands of source lines of code (KSLOC), the number of classes, function points (FP), or any other measurable unit. The defect density is calculated by dividing the weighted number of defects by the size of the source lines of code in thousands. Defect density helps in monitoring test progress by:

· Comparing defect density in various software components to identify high risk components and change the test approach accordingly.

· Evaluating if the component has met the defect density exit criteria.

Consider an example where you have tested a software component and found 20 weighted defects. The code for the component contains 10,000 lines of code. The defect density for the software component will be calculated as:

Defect density = 20/10, which will result in 2 defects per thousand lines of code.

Defect Density
Defect density is the ratio between the number of defects found in a component or system and size of the component or system. The size can be measured in Thousands of Source Lines of Code (KSLOC), the number of classes, Function Points (FP), or any other measurable unit. Defect density helps in monitoring test progress by comparing defect density in various software components to identify high risk components and change the test approach accordingly and by evaluating if the component has met the defect density exit criteria.

Example of Defect Density
Consider an example where you have tested a software component and found 20 defects. The code for the component contains 10,000 lines of code. The defect density for the software component will be calculated as:

Defect density = 20/10, which will result in 2 defects per thousand lines of code.

Failure Rate
Failure rate is the frequency of tests failing per unit of measure. The unit of measure can be time, the number of transactions, or the number of test cases executed. Failure rate helps to decide whether or not further testing is required and serves as an exit criterion for a level of testing. Failure rates calculated over a period of time can be represented as charts that help in measuring test progress.

Figure 9-1: A sample use of failure rate.

Activity 9-2

Identifying Test Metrics and Measurements
Scenario:
You have been assigned the task of performing qualitative and quantitative analysis of the online shopping portal of OGC Inc. To do this, you need to identify the information in test metrics, apply the measurement technique, and monitor the test progress by determining the defect density and failure rate.

1.

Identify the information that you will capture in test metrics.


a)
Dates of testing activities.
b)
Frequency of tests failing per unit of measure.


c)
Information about test case execution.
d)
Status of test case execution.

e)
Effort required in preparing test cases and the test environment.
2.

True or False? Defect density is used to monitor test progress by evaluating if the component has met the defect density exit criteria.

a)
True
b)
False
3.

Which statements are true about test metrics?
a)
They are used to detect defects.


b)
They are used to validate test activities against the planned schedule and budget.

c)
They are used to measure the quality of software.
d)
They are used to decide whether or not further testing is required and serves as an exit criterion for a level of testing.
4.

True or False? Failure rate is the frequency of tests executed per unit of measure.
a)
True

b)
False
Topic B

Create Test Summary Reports

You assessed test logs, the outcome of which is conveyed in the form of a summary report, which typically has a set format. In this topic, you will create a test summary report.

To make informed decisions about the software being developed, it is important for stakeholders to know not just the outcome of the tests, but also the tests that have been performed and their outcome. Consider a scenario where you are involved in the testing of a software product. After you execute test cases, you need to create a summary of the activities performed during the testing phase. The summary of the testing status enables you to estimate and decide if any modifications are needed before launching the software product in the market. In addition, the test summary report enables you to evaluate the test progress, and modify future plans and the test strategy accordingly.

You assessed test logs, the outcome of which is conveyed in the form of a summary report, which typically has a set format. In this topic, you will create a test summary report.

Test Summary Reports
A test summary report is a summary of the results of testing activities that are performed during the testing phase. It provides the overall testing status of an application across various levels including assessment of the quality of testing effort and of the software system under test. Some of the parameters being tested for their status include: the number of modules tested, the number of test cases passed or failed, and the number of bugs identified. This report is generally prepared by the person who performs the test after the actual execution of test cases, which contains discrepancies between the actual and expected results.

[image: image84]
The parameters being tested for their status can also be in percentage.

The test summary report enables you to evaluate the effectiveness of testing effort, the quality of the application, and different areas covered under tests. It also enables you to estimate and decide if any corrections or changes are needed before launching the software product in the market. In addition, a test summary report provides reference for lessons learned that can be applied to future projects.

Figure 9-2: A sample use of the test summary report.

Test Summary Reports
A test summary report is a summary of the results of testing activities that are performed during the testing phase. It provides the overall testing status of an application across various levels including assessments of the quality of testing effort and of the software system under test. Some of the parameters being tested for their status include: the number of modules tested, the number of test cases passed or failed, and the number of bugs identified. This report is generally prepared by the person who performs the test after the actual execution of test cases, which contains discrepancies between the actual and expected results.

[image: image86]
The parameters being tested for their status can also be in percentage.

The test summary report allows you to evaluate the effectiveness of testing effort, the quality of the application, and different areas covered under tests. It also allows you to estimate and decide if any corrections or changes are needed before launching the software product in the market. In addition, a test summary report provides reference for lessons learned that can be applied to future projects.

Preconditions for Creating a Test Summary Report
Some of the preconditions to fulfill before you start creating a test summary report include:

· The test log needs to be complete.

· Testing activities such as test data setup and the test environment need to be complete.

· Test cases should have been executed or they should each have a test status such as pass, fail, or blocked.

Preconditions for Creating a Test Summary Report
Some of the preconditions to fulfill before you start creating a test summary report include the prior completion of the test log, prior completion of testing activities such as test data setup and the test environment, and need for prior execution of test cases or for each of them to have a test status such as pass, fail, or blocked.

Guidelines for Creating a Test Summary Report
The guidelines for creating a test summary report include:

· Create a report on a regular basis after the completion of all testing activities.

· Create the test summary report in the form of tables, charts, or matrices.

· Generate electronic copies of test summary reports before and after the delivery of the final product.

Guidelines for Creating a Test Summary Report
The guidelines for creating a test summary report include creating a report on a regular basis after the completion of all testing activities, creating the test summary report in the form of tables, charts, or matrices, and generating electronic copies of test summary reports before and after the delivery of the final product.

Merits of Test Summary Reports
The test summary report contains information about the testing phase for use by the project management team and the client. It enables you to:

· View a summarized list of testing activities that were performed since the previous test summary report.

· Acquire information about the current status of testing effort in the project.

· Acquire information about the current status of the quality of the application.

· Take corrective action if necessary to improve the quality of the application.

Merits of Test Summary Reports
A test summary report contains information about the testing phase for use by a project management team and a client. It enables you to view a summarized list of testing activities that were performed since the previous test summary report, acquire information about the current status of testing effort in the project and of the quality of the application, and take corrective action if necessary to improve the quality of the application.

Components of a Test Summary Report
You need to use a detailed test summary report that clearly describes the results of testing activities. The table lists some of the components of a test summary report.

Component

Description

Test summary report identifier

It identifies a test summary report.

Summary

It summarizes testing activities in the testing process, including versions, release, and the environment of the software.

Variance

It describes the variances of test items from the test plan, test procedures, and test design.

Comprehensive assessment

It specifies the comprehensiveness of test effort as compared to test objectives and test completeness criteria described in the test plan. It also specifies any features or a combination of features that were not fully tested based on the plan.

Summary of results

It summarizes testing results and describes unresolved and resolved incidents along with their solutions.

Evaluation

It evaluates each test item based on test results and records the severity level of the failure in case of a failed test case.

Summary of activities

It records the summary of all testing activities and events, including resource consumption, actual duration of tasks, and hardware and software tool usage.

Approval

It lists the names of all persons who are authorized to approve this document.

The IEEE Test Summary Report Template
You can use a standard template provided by IEEE for reporting on a test summary. The template provides guidelines to include relevant details of testing activities in this report. In addition, it also enables you to use charts or tables to record important events that occurred during testing, such as the objectives of testing and whether they were achieved, the test strategy followed and how well it worked, and the overall effectiveness of the test effort. The important sections of the IEEE test summary report template include:

· Test Summary Report Identifier

· Summary

· Variances

· Comprehensive Assessment

· Summary of Results

· Evaluation

· Summary of Activities

· Approvals

Figure 9-3: A sample use of the IEEE test summary report template.

The IEEE Test Summary Report Template
You can use a standard template provided by IEEE for reporting a test summary. The template provides guidelines for incorporating relevant details of testing activities into the test summary report. In addition, it also enables you to use charts or tables to record important events that occurred during testing. These events include the objectives of testing and whether they were achieved; the test strategy followed and how well it worked; and the overall effectiveness of the test effort. The significant sections of the IEEE test summary report template include the test summary report identifier, the summary, variances, comprehensive assessment, the summary of results, evaluation, the summary of activities, and approvals.

Tasks to Evaluate Exit Criteria
The tasks to evaluate exit criteria include:

· Check for evidence of the execution of test cases and the defects raised, fixed, and confirmed. Evidence is gathered by checking test logs against the exit criteria specified in the test plan.

· Execute more tests if you have not executed all of the test cases that have been designed. If you realize that expected coverage on test cases is not reached or if risks have increased for the project, you may need to change the exit criteria to lower such risks by assessing if more tests are needed or if the exit criteria specified should be changed.

· Impart adequate knowledge of the outcome of the test. It is important that all stakeholders need to know what testing has been done and the outcome of the testing. You write a test summary report for stakeholders to make informed decisions about the software.

Tasks to Evaluate Exit Criteria
There are certain tasks that need to be performed to evaluate exit criteria. You need to check for evidence of the execution of test cases and defects raised, fixed, and confirmed. Evidence is gathered by checking test logs against exit criteria specified in test planning. More tests need to be executed if you have not executed all of the test cases that have been designed. If you realize that expected coverage on test cases is not reached or risks have increased for the project, you may need to change the exit criteria to lower such risks by assessing if more tests are needed or if the exit criteria specified should be changed.

Adequate knowledge of the outcome of the test needs to be imparted to all project members. It is important that all stakeholders need to know what testing has been done and the outcome of the testing. You will also write a test summary report for stakeholders to make informed decisions about the software.

Create Test Summary Reports

Procedure Reference: Create a Test Summary Report
To create a test summary report:

1. Before creating a test summary report, you need to fulfill certain conditions:

· Ensure that the test log is complete.

· Ensure that testing activities are complete.

· Ensure that associated test reports, such as test logs, are available.

2. Identify a test summary report identifier so that the appropriate and latest document is available for the needed information.

3. Analyze the test log and extract relevant information about the execution of the test case.

4. Record the relevant details about the test case:

· Summary

· Variance

· Comprehensive assessment

· Incident identifier

· Summary of results

· Evaluation

· Summary of activities

· Approval

Discovery Activity 9-3

Understanding Test Summary Reports
Scenario:
You have been assigned the task of creating a test summary report to summarize testing activities. Before creating the test summary report, you would like to validate your knowledge of test summary reports.

1.

Identify the preconditions that you need to fulfill before you start creating a test summary report.
a)
A test procedure.


b)
A complete test log.

c)
Every test case should have a test status such as pass, fail, or blocked.
d)
A test incident report.
2.

A test summary report provides:


a)
A summarized list of testing activities.
b)
Information about anomalous events that can occur before and after an unexpected event.


c)
Information about the current status of testing effort in the project.
d)
A comparison of the expected result with the actual result.

e)
Information about the current status of the quality of the application.
3.

Identify the component of the test summary report that records the changes in the software specification for a software application.
a)
Summary

b)
Variance
c)
Comprehensive assessment
d)
Evaluation
4.

Identify the component of the test summary report that describes unresolved and resolved incidents along with their solutions.
a)
Summary of activities

b)
Summary of results
c)
Variance
d)
Summary
Discovery Activity 9-4

Creating a Test Summary Report
Data Files:
· test_log

Setup:
Before You Begin:

From the C:\085046Data\Implementing_Tests folder, open the test_log.doc file.

Scenario:
You have executed test cases for the online shopping portal of OGC Inc. and logged important information regarding the order of test case execution and the test status. You need to gather information from the test log to create a detailed summary to provide an overall testing status of the shopping portal including testing effort and quality.

1.

Write the scope of testing for the online shopping portal.

The scope of testing for the portal includes:1. It should be user friendly. 2. It should use some graphics, which should load fast. 3. It should have high availability and fast response time for both enquiries and purchase transactions. 4. It should display a catalog of types of tea so that a user may select a specific tea for online purchase. 5. The information in the catalog should be fetched from the central server managed by the parent company. 6. The portal should use secure credit card transactions for making online payment. 7. Customers should also be able to provide feedback for any type of tea which will impact the remaining stock of tea for sale on the website. 8. The portal should also use an external payment system, such as PayPal, for online payment.

2.

Write the results of the test case execution for the online shopping portal.

The test result for the execution of test cases of the online shopping portal includes:Number of passed test cases: 5 Number of failed test cases: 3 Number of blocked test cases: 1

3.

Write the details of the outstanding incident that cannot be resolved for the online shopping portal.

Test case test_9 could not be executed by a tester. Only an administrator with a valid user name and password can modify the details of tea in the portal.
4.

Write the details of the incidents that can be resolved for the online shopping portal.

There are three incidents: defect_001, defect_002, and defect_003 that have all been raised for the failed test cases test_2, test_3, and test_8 respectively. These incidents will be resolved during the testing process.
5.

Is it possible to start the test phase of testing for the online shopping portal? Why?

The online shopping portal is not ready to be tested for the next phase due to an unresolved incident.
Topic C

Perform Test Closure Activities

You created test summary reports. The last step in a typical testing process is to carry out test closure activities. In this topic, you will perform test closure activities.

After completing testing activities, you need to consolidate testing experience, testware, and data. Consider a scenario, where you have completed the testing activities for a software application. After summarizing the testing activities, you need to perform different activities for test closure such as checking that planned deliverables have been met and finalizing and archiving testware to consolidate experience. These activities enable the project and testing teams to evaluate and analyze various testing processes and analyze lessons learned for implementation in future releases and projects.

You created test summary reports. The last step in a typical testing process is to carry out test closure activities. In this topic, you will perform test closure activities.

Test Closure
Definition:
Test closure is a phase of the testing process in which you collect data from completed test activities to consolidate experience, such as testware, facts, and numbers. Test closure occurs when you release a software product, gather relevant information from testing, complete or cancel a test project, achieve a milestone, and roll out a maintenance release. In addition, the test closure phase is also related to finalizing and archiving testware, and evaluating the test process by preparing a test evaluation report.

Example:

Test Closure
Definition:
Test closure is a phase of the testing process in which you collect data from completed test activities to consolidate experience such as testware, facts, and numbers. Test closure occurs when you release a software product, gather relevant information from testing, complete or cancel a test project, achieve a milestone, and roll out a maintenance release. In addition, the test closure phase is also related to finalizing and archiving testware, and evaluating the test process by preparing a test evaluation report.

Example:
Test Closure Activities
Test closure activities include:

· Checking the planned deliverables and ensuring that all incidents in incident reports are resolved through defect repair or deferral. For deferred defects or defects that remain open, you may request a change in a future release. In addition, you document the acceptance or rejection of the software system.

· Finalizing and archiving testware, the test environment, and any other test infrastructure that can be reused later. In addition, it also allows you to compare the results of testing between software versions.

· Handing over testware to the maintenance organization, which will support the software and fix bugs or perform maintenance changes for use in confirmation testing and regression testing. The maintenance group may be a separate group of people, who build and test the software.

· Evaluating the testing process and analyzing lessons learned for future releases and projects, and the improvement of test maturity. This includes process improvements for the software development life cycle and for test processes.

Test Closure Activities
There are many test closure activities that you need to perform. You need to check planned deliverables and ensure that all incidents in incident reports are resolved through defect repair or deferral. For deferred defects or defects that remain open, you may request a change in a future release. In addition, you can also document the acceptance or rejection of the software system. You then need to finalize and archive testware, the test environment, and any other test infrastructure that can be reused later. Reusing testware enables you to reduce the effort if the testware is part of a library of existing tests. In addition, it allows you to compare the results of testing between software versions.

As part of test closure activities, you need to hand over testware to the maintenance organization, which will support the software and fix bugs or perform maintenance changes for use in confirmation and regression testing. The maintenance group may be a separate group of people, who build and test software. Finally, you need to evaluate the testing process and analyze lessons learned to enhance future releases and projects, and improve test maturity. This includes process improvements for the software development life cycle and for test processes.

Factors Affecting Test Closure Activities
Some of the factors affecting test closure activities include:

· Failure in complying with the deadline for scheduled migration of code into the test environment.

· Non-availability of the test environment.

· Failure to conduct system integration testing on multiple systems.

· Non-availability of test data before execution.

Factors Affecting Test Closure Activities
Some of the factors affecting test closure activities include failure in complying with the deadline for scheduled migration of code into the test environment, non-availability of the test environment, failure to conduct system integration testing on multiple systems, which requires monitoring the overall quality, and non-availability of test data before execution.

Testware
Testware is a set of objects produced during the test process. These objects are required to plan, design, and execute tests. Testware includes test cases, test reports, a test plan, scripts, inputs, expected results, setup requirements, procedures, files, databases, an environment, and any additional software or utilities used in testing. In addition, testware includes utilities and application software that serve in combination for testing a software application but does not necessarily contribute to operational purposes. Testware is a result of verification and validation of testing methods and should be controlled by a configuration management system.

Release Notes
Release notes are documents that contain the summary of recent changes, enhancements, and fixes for bugs in a particular software release when it is still in the development or testing stage. Release notes describe new capabilities, functionalities that can be tested, functionalities that cannot be tested, known defects, and defects that are fixed. It is a supplementary document that is delivered to the client every time a bug is fixed or an enhancement is made in the software product. The table lists some of the important sections of a release note.

Section

Description

Overview

It describes the product and changes in it.

Purpose

It describes the purpose of the release note and includes information such as new features and fixes for a bug.

Summary of Issues

It describes the bugs and the enhancement in the release of the software.

Steps to Reproduce

It describes the steps that were followed when the bug was encountered.

Sign-Off
Sign-off refers to the approval you get from all stakeholders related to a software product under test. It is a document in the approval process, where a vendor for development or testing enters into an agreement with a client that all agreed deliverables have been provided to the client with expected quality. Sign-off can be in the form of a written and signed document or approval mail sent by the client.

Perform Test Closure Activities

Procedure Reference: Perform Test Closure Activities
To perform test closure activities:

1. Ensure that the testing process is complete.

2. Check the planned deliverables.

3. Ensure that all incidents are resolved.

4. Finalize and archive testware.

5. Evaluate the testing process and analyze lessons learned for future releases.

Discovery Activity 9-5

Understanding Test Closure Activities
Scenario:
You have been assigned the task of performing test closure activities. Before performing this task, you would like to validate your knowledge of test closure activities.

1.

Which statements are true about test closure?


a)
It is a phase of the testing process in which you collect data from completed test activities.
b)
It is used to acquire information about the current status of testing effort in the project.

c)
It includes finalizing and archiving testware.
d)
It is used to acquire information about the current status of the quality of the application.
2.

Identify the testware that is produced in the test process.
a)
Release notes


b)
Test cases
c)
Software updates


d)
Test plans

e)
The environment
3.

True or False? A sign-off is getting approval from all stakeholders for a software application under test.

a)
True
b)
False
4.

Identify the section in the release notes that describes the bugs and the enhancements to the software release.
a)
Overview
b)
Purpose
c)
Steps to Reproduce

d)
Summary of Issues
Discovery Activity 9-6

Performing Test Closure Activities
Scenario:
You have successfully completed the testing process and created different reports to record the relevant details of testing activities for the online shopping portal, OGC Inc. You need to consolidate testing experience by performing activities for test closure. In addition, you need to analyze the testing process and lessons learned for future releases or projects.

1.

Write the tasks for test closure activities that are related to the software system under test.

Answers will vary, but may include:1. Checking the planned deliverables. 2. Ensuring that all incidents reported in the incident report are resolved. 3. Documenting the acceptance or rejection of the software system under test.

2.

Write the tasks for test closure activities that are related to testware.

Answers will vary, but may include:Finalize and archive testware and the test environment. Hand over testware to the maintenance organization.

3.

What are the advantages of passing on the testware to a maintenance organization?

Answers will vary, but may include:Handover of testware to a maintenance organization enables the organization to support the software application and fix bugs or perform maintenance changes.

4.

List the test closure tasks for the improvement of test processes.

Answers will vary, but may include:Evaluate the testing process. Analyze lessons learned in the testing process.

Lesson 9 Follow-up
In this lesson, you identified test metrics and measurements to measure the quality of software. You created test summary reports to summarize testing activities. In addition, you performed test closure activities to optimize the testing process.

1.

How will you optimize the testing process?

Answers will vary, but may include:

You analyze projects that have been completed and use best practices from previous projects to optimize the testing process.

2.

Identify the significance of test summary reports.

Answers will vary, but may include:

Test summary reports provide a synopsis of the complete testing process, such as a summary of results, testing effort and quality.

Lesson 10
Identifying Testing Tools
Lesson Objectives:

In this lesson, you will identify testing tools.

You will:

· Understand automation tools.

· Identify tools to manage the testing process.

· Identify tools for static analysis.

· Identify tools to specify tests.

· Implement test execution tools.

· Implement performance testing and monitoring tools.

· Identify other testing tools.

· Introduce tools into an organization.

Introduction

You reported on tests and performed test closure activities. Now you may want to move from manual testing to automated testing by identifying various testing tools in the testing process. In this lesson, you will identify various testing tools and work with them to automate testing activities.

You need to use testing tools to automate repetitive tasks, and thereby improve the efficiency of testing. Out of the several testing tools available, you need to identify the one that best fits a task. By using testing tools, you can even automate complex testing tasks such as comparing large volumes of data and simulating a specific behavior required for testing. Therefore, it is important to be familiar with the different tools available in order to choose the most appropriate one for a particular task.

Topic A

Understand Automation Tools

You performed manual testing. Now you may want to identify the different automation tools used in the testing process and select an appropriate one to automate different testing activities. In this topic, you will understand automation tools.

Before using different testing tools to automate testing activities, you need to familiarize yourself with the benefits, limitations, and risks associated with automation tools. Knowledge of automation tools enables you to select tools that best fit the requirements. Automation tools improve testing efficiency and reliability by automating repetitive tasks. Therefore, it is important to understand the various aspects of automation in the testing process.

Test Automation
Test automation is a method of implementing software tools to achieve automatic control while performing testing activities, thereby minimizing human intervention. It involves automating the manual testing process to control the execution of tests, compare actual results with expected results, set up test preconditions, and perform other test control and reporting functions.

Automation Tools
Definition:
Automation tools are a collection of software products or applications designed to automate manual testing tasks in the testing process. They assist software testers and test managers with different aspects of a testing project. Several automation tools are available for automating testing activities. Each of these tools assists software testers with one or more testing activities. However, the tools do not provide assistance in performing all of the testing activities. By using them, you can reduce the amount of effort in performing repetitive tasks, such as reentering the same test data or creating a specific test database. In addition, they provide consistency in performing testing activities.

Example:
Consider a scenario where you need to test the functionality of a website. You need to perform different testing tasks such as clicking hyperlinks to ensure that they are valid and functional. In addition, you need to test the basic functionality of the features of the website. Performing the testing tasks manually may take a lot of time and effort. To make testing tasks easier, you can use different testing tools that will automatically examine the website for different testing activities such as browser compatibility, performance issues, broken hyperlinks, HTML standard adherence, and spelling.

Benefits of Automation Tools
There are various benefits and opportunities that you can achieve with the use of automation tools in testing. By using them you can:

· Reduce the effort spent on performing repeated tasks, such as running regression tests, reentering the same test data, and checking against coding standards.

· Achieve greater consistency and efficiency in performing testing tasks, such as test planning and creating new test cases besides running test cases.

· Perform a testing task with accuracy and precision by checking the results of a task each time.

· Reduce resources by simulating the real world without the involvement of too many people and testing devices.

· Access information about tests or testing such as statistics and graphs about test progress, incident rates, and performance.

· Test a limitless number of projects relentlessly as tools never get tired.

Limitations of Automation Testing Tools
There are several limitations associated with the use of automation testing tools. Some of them include:

· It takes time to develop ways of using a tool in order to achieve what is possible. There is a possibility of underestimating the time, cost, and effort for the initial introduction of a tool.

· It is not a straightforward task to introduce a new tool in an organization. You tend to start using the tool with a number of people in a way that will bring benefits quickly. This can result in underestimating the time and effort needed to achieve significant and continuing benefits from the tool.

· It is essential to plan for the correct estimation of the effort required to maintain test assets produced by the tools. Insufficient planning will result in an ineffective tool.

· It is important to use a good quality tool that can expedite testing tasks. However, it does not replace the intelligence needed to know how best to use it, and how to evaluate current and future uses of the tool.

Risks of Automation Testing Tools
Some of the risks of using automation testing tools include:

· You may encounter unrealistic expectations for the tool including its functionality and ease of use.

· You tend to rely too much on a tool and replace the existing method to perform a testing task with the automation tool.

· You become more complacent and fail to notice when something goes wrong.

Automation Tools
Definition:
Automation tools are a collection of software products or applications designed to automate manual testing tasks in the testing process. They assist software testers and test managers with the different aspects of the testing project. Several automation tools are available for automating testing activities. Each of these tools assists software testers with one or more testing activities. However, the tools do not provide assistance in performing all of the testing activities. By using them, you can reduce the amount of effort in performing repetitive tasks such as reentering the same test data or creating a specific test database. In addition, they provide consistency in performing testing activities.

Example:
Example of Automation Tools
Consider a scenario where you need to test the functionality of a website. You need to perform different testing tasks such as clicking hyperlinks to ensure that they are valid and functional. In addition, you need to test the basic functionality of the features of the website. Performing the testing tasks manually may take a lot of time and effort. To make testing tasks easier, you can use different testing tools that will automatically examine the website for different testing activities such as browser compatibility, performance issues, broken hyperlinks, HTML standard adherence, and spelling.

Benefits of Automation Tools
There are various benefits and opportunities that you can achieve with the use of automation tools in testing. By using them you can:

· Reduce the effort spent on performing repeated tasks such as running regression tests, reentering the same test data, and checking against coding standards.

· Achieve greater consistency and efficiency in performing testing tasks such as test planning and creating new test cases besides running test cases.

· Perform a testing task with accuracy and precision by checking the results of a task each time.

· Reduce resources by simulating the real world without the involvement of too many people and testing devices.

· Access information about tests or testing such as statistics and graphs about test progress, incident rates, and performance.

· Test a limitless number of projects relentlessly.

Limitations of Automation Testing Tools
There are several limitations associated with the use of automation testing tools. Some of them include:

· It takes time to develop ways of using the tool in order to achieve what is possible. There is a possibility of underestimating the time, cost, and effort for the initial introduction of a tool.

· It is not a straightforward task to introduce a new tool in an organization. You tend to start using the tool with a number of people in a way that will bring benefits quickly. This can result in underestimating the time and effort needed to achieve significant and continuing benefits from the tool.

· It is essential to plan for the correct estimation of the effort required to maintain test assets produced by the tools. Insufficient planning will result in an ineffective tool.

· It is important to use a good quality tool that can expedite testing tasks. However, it does not replace the intelligence needed to know how best to use it, and how to evaluate current and future uses of the tool.

Risk of Automation Testing Tools
Some of the risks of using automation testing tools include:

· You may encounter unrealistic expectations for the tool including its functionality and ease of use.

· You may tend to rely too much on a tool and replace the existing method to perform a testing task with the automation tool.

· You may become more complacent and fail to notice when something goes wrong.

Test Tool Classification
Tools are grouped by testing activities or areas that they support. Some tools perform a specific function; others provide support for a number of different functions. These tools are classified under the activity with which they are most closely associated. The classification of test tools includes tool support for:

· Management of testing and tests, such as test management, requirements management, incident management, and configuration management tools.

· Static testing such as review process support, static analysis, and modeling tools.

· Test specification such as test design and test data preparation tools.

· Test execution and logging such as test execution, the test harness, test comparators, coverage measurement, and security tools.

· Performance and monitoring such as dynamic analysis, performance testing, and monitoring tools.

· Specific application areas such as functional testing and source code testing tools.

Test Tool Classification
Tools are grouped based on the testing activities or areas they support. Some tools perform a specific function while others provide support for a number of different functions. Tools are classified under the activity with which they are most closely associated.

Areas Supported by Test Tools
The classification of test tools includes tool support for:

· Management of testing and tests such as test management, requirements management, incident management, and configuration management tools.

· Static testing such as review process support, static analysis, and modeling tools.

· Test specification such as test design and test data preparation tools.

· Test execution and logging such as test execution, the test harness, test comparators, coverage measurement, and security tools.

· Performance and monitoring such as dynamic analysis, performance testing, and monitoring tools.

· Specific application areas such as functional testing and source code testing tools.

The Probe Effect
The probe effect is the effect caused on a system by a measurement instrument when the system is being measured by a tool. This effect causes unexpected system behavior such as an unexpected actual outcome of a test. Consider an example where tests differ in duration when measured using different performance tools, or a different measure of code coverage is obtained while using different coverage tools.

Activity 10-2

Understanding Automation Tools
Scenario:
Before you start using automation tools to automate manual testing tasks, you may want to check your understanding of automation tools. In this activity, you will review the concepts related to automation tools to perform repetitive testing tasks automatically.

1.

True or False? Test automation enables you to achieve automatic control in performing testing activities.

a)
True
b)
False
2.

Which statements are true about an automation testing tool?


a)
It is a collection of software products designed to automate manual testing tasks.
b)
It enables you to test only a limited number of projects.

c)
It enables you to reduce the amount of effort in performing repetitive tasks.
d)
It does not perform a testing task with accuracy and precision.
3.

What are the main attributes of test automation?


a)
Time saving
b)
Expensive


c)
Correctness

d)
More reliable
e)
More manpower
4.

Test design tools belong to tools that support:
a)
Static testing.
b)
Test execution and logging.

c)
Test specification.
d)
Management of testing and tests.
5.

True or False? The probe effect is the effect that is caused by the measurement instrument on a system when it is being measured by a tool.

a)
True
b)
False
6.

Identify the benefits of using an automation tool.
a)
It completely removes human intervention in the testing process.


b)
It reduces the effort spent on performing repeated tasks.
c)
It is highly reliable.

d)
It performs testing tasks with accuracy and precision.
Topic B

Identify Tools to Manage the Testing Process

You familiarized yourself with automation tools. A commonly used category of testing tools are tools to manage the testing process. In this topic, you will acquire knowledge about the tools used in the management of tests and the testing process.

The management of testing applies to the entire testing life cycle, so a test management tool could be among the first tool to be used in a testing project. It is important to identify tools that will help you automate several test management activities. Identifying the tools will enable you to manage tests that begin early in the project and continue to be used throughout the project and also after the system had been released.

Test Management Tools
Test management tools are used to manage tests and testing activities. The management of testing spans the entire software development life cycle. A test management tool enables you to manage tests. Its usage begins early in the project and extends throughout and beyond the project life cycle. Test management tools are generally used by software testers or test managers at the system or acceptance test level to provide support for different testing activities.

Special Consideration for Test Management Tools
Test management tools need to interface with other tools or spreadsheets in order to produce information in the best format for the current needs of an organization. The reports need to be designed and monitored so that they provide a benefit.

Test Management Tools
Test management tools are used to manage tests and testing activities. The management of testing spans the entire software development life cycle. A test management tool enables you to manage tests. Its usage begins early in the project and extends throughout and beyond the project life cycle. Test management tools are generally used by software testers or test managers at the system or acceptance test level to provide support for different testing activities.

Special Consideration for Test Management Tools
Test management tools need to interface with other tools or spreadsheets in order to produce information in the best format for the current needs of an organization. The reports need to be designed and monitored so that they provide benefit.

Features of Test Management Tools
Some of the features of test management tools include:

· Managing tests, such as tracking associated data for a given set of tests; and getting information, such as tests that need to run in a common environment and the number of tests planned, written, executed, passed, or failed.

· Scheduling tests to be executed either manually or by a test execution tool.

· Managing testing activities, such as time spent in test design, test execution, and test budget.

· Providing interfaces to different tools, such as test execution tools, incident management tools, requirement management tools, and configuration management tools.

· Providing traceability of tests, test results, and defects to requirements.

· Logging test results to summarize results from test execution tools that are interfaced by the test management tool.

· Preparing progress reports based on quantitative analysis or metrics such as:

· Tests executed and passed.

· Incidents raised, defects fixed, and outstanding defects.

Features of Test Management Tools
Test management tools contain various features.

Feature

Description

Track tests

Manages tests such as tracking associated data for a given set of tests, getting information such as tests that need to run in a common environment and the number of tests planned, written, executed, passed, or failed.

Schedule tests

Schedules tests to be executed either manually or by a test execution tool.

Manage test activities

Manages testing activities such as time spent in test design, test execution, and test budget.

Provide interfaces

Provides interfaces to different tools such as test execution tools, incident management tools, requirement management tools, and configuration management tools.

Provide traceability

Provides traceability of tests, test results, and defects to requirements.

Log test results

Logs test results to summarize results from test execution tools that are interfaced by the test management tool.

Prepare progress reports

Prepares progress reports based on quantitative analysis or metrics such as:

· Tests executed and passed.

· Incidents raised, defects fixed, and outstanding defects.

Requirements Management Tools
Requirements management tools are used to track changes in requirements as well as to maintain the traceability of requirements to test procedures. By using such a tool, you can reevaluate the testability of the changed requirement as well as the impact of changes to test artifacts, such as the test plan, test design, or testing schedule. Whenever the requirement changes, the change should be reflected and updated in the requirements management tool. This tool enables you to mark the affected test artifacts to ensure that respective stakeholders can update their products accordingly. In addition, these tools provide the latest information about requirements to all stakeholders.

Requirements Management Tools
Requirements management tools are used to track changes in requirements as well as to maintain the traceability of requirements to test procedures. By using such a tool, you can reevaluate the testability of the changed requirement as well as the impact of changes to test artifacts, such as the test plan, test design, or testing schedule. Whenever requirements change, such details should be reflected and updated in the requirements management tool. This tool enables you to mark the impacted test artifacts to ensure that respective stakeholders can update their products accordingly. In addition, these tools provide the latest information about requirements to all stakeholders.

Features of Requirements Management Tools
Some of the features of requirements management tools include:

· Storing requirement statements and attributes.

· Checking consistency of requirements.

· Identifying undefined, missing, or deferred requirements.

· Prioritizing requirements for testing purposes.

· Enabling traceability of requirements to tests and of tests to requirements, functions, or features.

· Providing traceability through levels of requirements.

· Providing the interface to test management tools.

· Providing coverage of requirements, functions, and features by a set of tests.

Features of Requirements Management Tools
Requirements management tools contain various features.

Feature

Description

Store requirements

Stores requirement statements and attributes.

Check consistency

Checks consistency of requirements.

Identify requirements

Identifies undefined, missing, or deferred requirements.

Prioritize requirements

Prioritizes requirements for testing purposes.

Enable traceability

Enables traceability of requirements to tests and of tests to requirements, functions, or features.

Provide traceability

Provides traceability through levels of requirements.

Provide interface

Provides the interface to test management tools.

Provide coverage

Provides coverage of requirements, functions, and features by a set of tests.

Incident Management Tools
Incident management tools are used to store and manage incidents, which are in the form of defects, failures, or anomalies. Because such a tool tracks defects in the testing process, it is also called a defect tracking tool. In addition, this tool enables you to monitor the progress of incidents in the incident life cycle and generates reports for statistical analysis of incidents.

Incident Management Tools
Incident management tools are used to store and manage incidents, which are in the form of defects, failures, or anomalies. Because such tools track defects in the testing process, they are called defect tracking tools. In addition, these tools enable you to monitor the progress of incidents in the incident life cycle and generate reports for statistical analysis of incidents.

Features of Incident Management Tools
Some of the features of incident management tools include:

· Storing information about the attributes of incidents.

· Storing attachments such as a screen shot of a defect.

· Prioritizing incidents during the resolution phase.

· Assigning tasks to different people to fix, confirm, close, or reopen incidents.

· Providing the status of incidents, such as open, rejected, duplicate, deferred, and closed.

· Reporting statistics about incidents, such as average time open, the number of incidents with each incident status, and the number of incidents raised, open, and closed.

Features of Incident Management Tools
Incident management tools contain various features.

Feature

Description

Store information

Stores information about the attributes of incidents.

Store attachments

Stores attachments such as a screen shot of the defect.

Prioritize incidents

Prioritizes incidents during the resolution phase.

Assign tasks

Assigns tasks to different people to fix, confirm, close, or reopen incidents.

Provide the status of incidents

Provides the status of incidents such as open, rejected, duplicate, deferred, and closed.

Report statistics about incidents

Reports statistics about incidents such as average time open, the number of incidents with each status, and the number of incidents raised, open, or closed.

Configuration Management Tools
Configuration management tools are used to keep track of different versions, variants, and releases of software, and test artifacts such as design documents, test plans, and test cases. By using these tools, you can identify the functional and physical attributes of software at various points. In addition, they help maintain software integrity and traceability throughout the software development life cycle by performing systematic control of changes to the identified attributes. Software testers and test managers access configuration management tools to control and monitor the testing process.

Configuration Management Tools
Configuration management tools are used to keep track of different versions, variants, and releases of software, and test artifacts such as design documents, test plans, and test cases. By using these tools, you can identify the functional and physical attributes of software at various points. In addition, they help maintain software integrity and traceability throughout the software development life cycle by performing systematic control of changes to the identified attributes. Software testers and test managers use configuration management tools to control and monitor the testing process.

Features of Configuration Management Tools
Some of the features of configuration management tools include:

· Storing information about versions and builds of software and testware.

· Enabling traceability between software and testware and different versions or variants.

· Keeping track of which versions belong to which configurations such as operating systems, libraries, and web browsers.

· Enabling build and release management.

· Baselining all configuration items that constitute a specific release.

· Accessing control by checking in and out.

Features of Configuration Management Tools
Configuration management tools contain various features.

Feature

Description

Store information

Stores information about versions and builds of software and testware.

Enable traceability

Enables traceability between software and testware and different versions or variants.

Track versions

Keeps track of which versions belong to which configurations such as operating systems, libraries, and web browsers.

Enable builds

Enables build and release management.

Baseline configuration items

Baselines all configuration items that constitute a specific release.

Access control

Accesses control by checking in and out.

Activity 10-3

Identifying Tools for Test Management
Scenario:
You performed manual testing in the testing process for the online shopping portal of OGC Inc. You need to change over from manual testing to automated testing by identifying tools for test management. Before you start using automation tools for test management, you may want to check your understanding of the tools and identify them for the management of tests and managing the testing process.

1.

Which tool enables you to keep track of different versions of source code, releases of software, and test artifacts?
a)
Test management tools
b)
Requirements management tools

c)
Configuration management tools
d)
Incident management tools
2.

Which tool will you use to manage test plans, test cases, and test reports?
a)
Configuration management tool
b)
Requirements management tool
c)
Incident management tool

d)
Test management tool
3.

Identify the features of the requirements management tool.
a)
It provides the status of requirements.


b)
It checks consistency of requirements.
c)
It assigns requirements to different people.


d)
It stores requirement statements and attributes.

e)
It prioritizes requirements for testing purposes.
4.

True or False? Test management tools enable you to manage test activities such as the time spent in test design, test execution, and test budget.

a)
True
b)
False
5.

Which statements are true about an incident management tool?
a)
It is used to store information about versions and builds of incidents and testware.


b)
It is used to store and manage incidents, which are in the form of defects, failures, or anomalies.
c)
It provides the interface to test management tools.

d)
It monitors the progress of incidents in the incident life cycle.
6.

Which tools will you use to manage the testing process?


a)
Test management tools
b)
Modeling tools


c)
Requirements management tools
d)
Static analysis tools

e)
Configuration management tools
Topic C

Identify Tools for Static Analysis

You acquired knowledge about tools used in the management of tests and testing process. In the software development process, you need to check source code for defects and inconsistencies. In this topic, you will acquire knowledge about tools used for static analysis of source code.

You invariably detect most of the defects during dynamic testing of a software product. However, defects can also be detected early in the development process before executing code. Consider a scenario where you have developed the source code for a software application. Before executing the source code, you need to examine it to identify any defects or inconsistencies using different automation tools. Knowledge of tools for static analysis of source code enables you to select the appropriate tool. By using these tools, you can understand the structure of code and enforce coding standards.

Compilers
Compilers are tools used by developers before component and integration testing to:

· Build a symbol table.

· Point out incorrect usage for noncompliance to coding language conventions.

· Calculate metrics from source code.

· Find faults in the syntax.

· And to provide information on variable use, which is useful during maintenance.

Compilers
Compilers are tools used by developers before component and integration testing to:

· Build a symbol table.

· Point out incorrect usage for noncompliance to coding language conventions.

· Calculate metrics from source code.

· Find faults in the syntax.

· Provide information on variable usage.

Static Analysis Tools
Static analysis tools are used by software developers and testers to examine source code without executing it. The source code is used as the input to the tool, which is analyzed to find defects before dynamic testing. Static analysis tools can also be used to analyze websites for proper use of accessibility tags and HTML standards.

Special Consideration for Static Analysis Tools
You can enforce coding standards by applying static analysis tools to source code. However, if applied to existing code, these tools can generate a lot of warning messages. These warning messages should be stopped to ensure easier maintenance of code in the future. It is also important to implement an effective approach that would exclude some messages.

Features of Static Analysis Tools
Static analysis tools support developers and testers in the testing process to perform different testing activities. Some of the features of static analysis tools include:

· Calculating metrics from source code, such as cyclomatic complexity or nesting levels, which can help to identify areas where more testing may be needed due to increased risk.

· Enforcing coding standards.

· Analyzing structures and dependencies, such as linked web pages.

· Helping in understanding source code.

· Identifying anomalies or defects in code.

Features of Static Analysis Tools
Static analysis tools contain various features that help developers and testers perform different testing activities.

Feature

Description

Calculating metrics

Calculates metrics from source code such as cyclomatic complexity or nesting levels, which can help to identify areas where more testing may be needed due to increased risk.

Enforce standards

Enforces coding standards to generate better quality code.

Analyze structures

Analyzes structures and dependencies such as linked web pages.

Understand source code

Helps in understanding source code.

Identify defects

Identifies anomalies or defects in code.

Review Process Support Tools
Review process support tools enable you to perform a formal review of documents that are accessed by people who are situated in different geographical locations. It is beneficial to use review process support tools to keep track of all information for a review process rather than use spreadsheets and text documents. These tools can be made suitable for a particular review process or a type of review and are generally used in the testing process to perform different activities.

Review Process Support Tools
Review process support tools enable you to perform a formal review of documents that are accessed by people who are located in different geographical locations. It is beneficial to use review process support tools to keep track of all information for a review process rather than use spreadsheets and text documents. These tools can be made suitable for a particular review process or a type of review and are generally used in the testing process to perform different activities.

Features of Review Process Support Tools
Some of the features of review process support tools include:

· Providing a common reference for review processes to be used in different situations.

· Storing information about review processes and sorting review comments.

· Communicating review comments to relevant people.

· Facilitating online reviews for team members who are geographically dispersed.

· Reporting statistical information about defects and tracking the effort.

· Providing traceability between comments, documents reviewed, and related documents.

· Providing a repository for rules, procedures, and checklists to be used in reviews including entry and exit criteria.

· Monitoring the review status.

· Collecting metrics on key factors.

Features of Review Process Support Tools
Review process support tools contain various features.

Feature

Description

Provide reference

Provides a common reference for review processes to be used in different situations.

Store information

Stores information about review processes and sort review comments.

Communicate comments

Communicates review comments to relevant people.

Facilitate online reviews

Facilitates online reviews for team members who are geographically dispersed.

Report statistical information

Reports statistical information about defects and tracks the effort.

Provide traceability

Provides traceability among comments, documents reviewed, and related documents.

Provide a repository

Provides a repository for rules, procedures, and checklists to be used in reviews including entry and exit criteria.

Monitor status

Monitors the review status.

Collect metrics

Collects metrics on key factors.

Modeling Tools
Modeling tools are used to validate models of a software system by checking inconsistencies and defects in the data model, object model, or state model. They are generally used by developers before dynamic testing, which enables them to detect and fix defects early in the development process. In addition, modeling tools are also used to generate test input or test cases from stored information about a particular model such as a state diagram. These tools also help developers design software.

Features of Modeling Tools
Some of the features of modeling tools include:

· Identifying inconsistencies and defects within the model.

· Identifying and prioritizing areas of different models for testing.

· Predicting system response and behavior under various situations, such as level of load.

· Understanding system functions and identifying test conditions using a modeling language such as UML.

Features of Modeling Tools
Modeling tools contain various features.

Feature

Description

Identify inconsistencies

Identifies inconsistencies and defects within a model.

Prioritize areas

Identifies and prioritizes areas of the model for testing.

Predict system response

Predicts system response and behavior under various situations, such as level of load.

Understand system functions

Understands system functions and identifies test conditions using a modeling language such as UML.

Activity 10-4

Identifying Tools for Static Analysis
Scenario:
Before you start using automation tools to perform static analysis on source code for the online shopping portal of OGC Inc., you need to check your understanding of the tools and identify them to perform static analysis of the source code.

1.

Which statements are true about a static analysis tool?


a)
It is used to analyze source code without executing it.
b)
It is used only by developers.

c)
It is used to detect defects or anomalies.
d)
It requires execution of source code to analyze coverage.
2.

Identify the features of a modeling tool.
a)
It is used to identify test conditions using XML.


b)
It is used to identify inconsistencies and defects within a model.
c)
It is used to store information about review processes.

d)
It is used to identify and prioritize areas of different models for testing.
3.

Which tool helps you in the design of software?
a)
Review process support tool
b)
Static analysis tool

c)
Modeling tool
d)
Compiler
4.

Which tool will you use to point out noncompliance to source code standards?
a)
Static analysis tool

b)
Compiler
c)
Review process support tool
d)
Modeling tool
5.

Which statements are true about a review process support tool?


a)
It is used to store information about review processes and sort review comments.
b)
It is used to identify and prioritize areas of the model for testing.
c)
It is used to identify inconsistencies and defects within the model.

d)
It is used to facilitate online reviews for team members who are geographically dispersed.
6.

Which tools will you use for static analysis?
a)
Static analysis and requirements management tools.

b)
Review process support, static analysis, and modeling tools.
c)
Incident management and modeling tools.
d)
Static analysis and configuration management tools.
7.

Which tool will you use for the review and inspection of a document?
a)
Compiler
b)
Modeling tool

c)
Review process support tool
d)
Static analysis tool
Topic D

Identify Tools for Test Specification

You familiarized yourself with the tools to perform static analysis. Another category of testing tools are tools that help you create test cases and set up test data for the execution of test cases. In this topic, you will identify tools to specify tests.

Generating test input and setting up test data to be used for the execution of test cases involve a great amount of effort. It is important to identify tools for automating these tasks, especially if an extensive range or volume of data is needed for testing. By using these tools, you can expedite the test design process, reduce effort, and achieve completeness of testing activities.

Test Design Tools
A test design tool is a type of testing tool that you can use to create test cases by generating test input or executable tests from requirements. By using this tool, you can also generate the expected outcome of a test case using a test oracle. You can use resultant test cases to verify the implementation of the model in software. You can also use some tools in this category to select combinations of possible factors not only to deploy in testing but also to ensure that all combinations of the operating system and browser are tested. You can also use a test design tool to identify buttons, lists, and input fields from the graphical user interface of a software application. The test design tool is sometimes called a screen scraper or test frame. You can use test design tools in the testing process to:

· Generate test input values from:

· Software requirements

· Design models such as the state, data, or object

· Program code

· Graphical user interfaces

· Test conditions

· Generate expected results, if an oracle is available to the test design tool.

Test Design Tools
A test design tool is a type of testing tool that you can use to create test cases by generating test inputs or executable tests from requirements. By using this tool, you can also help generate expected outcome of the test case with the use of the test oracle. You can use resultant test cases for verifying the implementation of the model in software. You can also use some tools in this category to select combinations of possible factors to be used in testing and to ensure that all combinations of the operating system and browser are tested.

You can also use a test design tool to identify all buttons, lists, and input fields from the graphical user interface of a software application. A test design tool is sometimes called a screen scraper or test frame. You can use test design tools in the testing process to generate test input values from software requirements, design models such as state, data, or objects, program code, graphical user interfaces, and test conditions.

Test Data Preparation Tools
Test data preparation tools are used to manipulate databases, files, or data transmissions to set up test data to be used during the execution of tests. In addition, they are used by developers to select data from an existing database and also during performance testing, where a large amount of realistic data is required. By using these tools, you can ensure that live data transferred to a test environment is made anonymous for data protection.

Features of Test Data Preparation Tools
Some of the features of test data preparation tools include:

· Extracting selected data records from files or databases.

· Making data anonymous so that it is identified with real people for data protection.

· Sorting records in any order.

· Generating new records populated with random data or data set up according to some guidelines.

· Constructing a large number of similar records from a template, to give a large set of records for volume tests.

Features of Test Data Preparation Tools
Test data preparation tools contain various features.

Feature

Description

Extract records

Extracts selected data records from files or databases.

Make data anonymous

Makes data anonymous so that it is identified with real people for data protection.

Sort records

Sorts records in any order.

Generate new records

Generates new records populated with random data or data set up according to some guidelines.

Construct similar records

Constructs a large number of similar records from a template, to give a large set of records for volume tests.

Activity 10-5

Identifying Tools for Test Specification
Scenario:
Before you start using automation tools to specify tests for the online shopping portal of OGC Inc., you need to check your understanding of the tools and identify them to generate test input and create test data for the execution of test cases.

1.

Which tool will you use to create test cases?
a)
Test data preparation tool
b)
Modeling tool

c)
Test design tool
d)
Configuration management tool
2.

Which input values are used by test design tools in the testing process?
a)
Test script


b)
Program code
c)
Test environment

d)
Graphical user interface
3.

Which test activities are supported by test data preparation tools?
a)
Test management and control
b)
Test execution and logging

c)
Test specification and design
d)
Performance and monitoring
4.

Which tool will you use to extract selected data records from files or databases?
a)
Test design tool
b)
Requirements management tool

c)
Test data preparation tool
d)
Incident management tool
5.

Which statements are true about a test design tool?
a)
It is used to extract selected data records from files or databases.
b)
It is used to generate new records populated with random data.


c)
It is used to create test cases by generating test input or executable tests from requirements.

d)
It is used to select a combination of possible factors to use in testing and to ensure that all combinations of the operating system and browser are tested.
Topic E

Implement Tools to Execute and Log Tests

You familiarized yourself with test specification tools. The next category of testing tools are tools that help you execute and log tests. In this topic, you will identify and implement tools to execute and log tests.

Executing test cases and logging test results manually may take a lot of time and effort. In addition, you need to frequently change input values to test the software application with different input values. It is important to identify tools for automating these tasks, especially if you need to manipulate tests with limited effort. By using these tools, you can execute tests automatically, record tests, and simulate the execution environment.

The next category of testing tools are tools that help you execute and log tests. In this topic, you will identify and implement tools to execute and log tests.

Data-Driven Testing
Definition:
Data-driven testing, which is a scripting technique for test execution tools, allows you to store test input and expected results in one or more central data sources or databases. Data sources are generally in the form of tables and spreadsheets with tests that are executed by a single control script. In addition, this technique enables you to populate a file or spreadsheet with data for a specific test, especially when you have limited knowledge of a scripting language. It is often used to support an application of test execution tools such as capture or playback tools.

Example:
Consider a scenario where you need to test an input form of a software application. You use a script that contains values entered during recording. The data you have specified does not cause errors in the application, but other data may cause errors. You use data-driven testing to test the input form with a different set of input values to ensure that the application works as expected.

Data-Driven Testing
Definition:
Data-driven testing, which is a scripting technique for test execution tools, allows you to store test input and expected results in one or more central data sources or databases. Data sources are generally in the form of tables and spreadsheets with tests that are executed by a single control script. In addition, this technique enables you to populate a file or spreadsheet with data for a specific test, especially when you have limited knowledge of a scripting language. It is often used to support an application of test execution tools such as capture or playback tools.

Example:
Example of Data-Driven Testing
Consider a scenario where you need to test an input form of a software application. You will use a script that contains values entered during recording. The data you have specified does not cause errors in the application, but other data may cause errors. You will use data-driven testing to test the input form with a different set of input values to ensure that the application works as expected.

Keyword-Driven Testing
Definition:
Keyword-driven testing is a scripting technique that allows you to use data files or spreadsheets to store test input, expected results, and keywords related to a software application being tested. The keywords in data files are interpreted by supporting scripts that are called by the control script for the test. These keywords can deal with both test input and expected outcomes. In addition, the use of keywords makes the tests reusable and easier to maintain. In addition, keyword-driven testing enables you to write tests with available keywords. You can add more keywords to the available set of scripts as needed.

Example:

Keywords
Some of the key concepts in keyword-driven testing include:

· Keywords that describe generalized user interface operations such as click, enter, and select.

· High-level business templates such as login and enter transactions.

· Keywords for higher level action words or short actions.

Test Execution Tools
Test execution tools are used to execute tests automatically with stored input and expected outcomes. It uses a scripting or programming language to drive the execution of tests. By using the programming skills, you can create and modify scripts to manipulate tests with limited effort. For example, you can modify scripts to repeat the test with different data, test a different part of the system with similar steps, and execute a different set of tests if a test fails. In addition, you can use test execution tools to capture or record manual tests. Because of this feature they are also called capture or playback tools. Capturing test input enables you to reproduce and document a test if a failure occurs.

Special Consideration for Test Execution Tools
A test execution tool is often considered a capture or playback tool that replays scripts to implement tests. This type of tool often requires effort in order to achieve significant benefits. Capturing tests by recording the actions of a manual tester is not suitable for large numbers of automated tests. A captured script is a linear representation with specific data and actions as part of each script. This type of script may be unstable when unexpected events occur.

Test Execution Tools
Test execution tools are used to execute tests automatically with stored input and expected outcomes. They use a scripting or programming language to drive the execution of tests. By using programming skills, you can create and modify scripts to manipulate tests with limited effort. For example, you can modify scripts to repeat a test with different data, test a different part of the system with similar steps, and execute a different set of tests, if a test fails. In addition, you can use test execution tools to capture or record manual tests. Because of this feature, they are also called capture or playback tools. Capturing test input enables you to reproduce and document a test if a failure occurs.

Special Consideration for Test Execution Tools
A test execution tool is often considered a capture or playback tool that replays scripts to implement tests. This type of tool often requires effort in order to achieve significant benefits. Capturing tests by recording the actions of a manual tester is not suitable for large numbers of automated tests. A captured script is a linear representation with specific data and actions as part of each script. This type of script may be unstable when unexpected events occur.

Features of Test Execution Tools
Some of the features of test execution tools include:

· Storing an expected result by comparing it with a screen or object, next time the test is executed.

· Executing tests from stored scripts and data files.

· Comparing screens, elements, links, controls, objects, and values during test execution.

· Logging results of test execution such as the pass or fail status, and differences between expected and actual results.

· Filtering subsets of actual and expected results such as excluding the screen with the current date and time that is not relevant to a specific test.

· Measuring execution time for tests.

· Synchronizing input with the application under test such as inserting a fixed delay to represent human interaction speed.

· Sending a summary of results to a test management tool.

Features of Test Execution Tools
Test execution tools contain various features.

Feature

Description

Store an expected result

Stores an expected result by comparing it with a screen or object, next time the test is executed.

Execute tests

Executes tests from stored scripts and data files.

Compare elements

Compares screens, elements, links, controls, objects, and values during test execution.

Log results

Logs results of test execution such as pass or fail status, differences between expected and actual results.

Filter subsets

Filters subsets of actual and expected results such as excluding the screen with the current date and time that is not relevant to a specific test.

Measure execution time

Measures execution time for tests.

Synchronize input with the application

Synchronizes input with the application under test such as inserting a fixed delay to represent human interaction speed.

Send summary

Sends a summary of results to a test management tool.

Test Harness Tools
Test harness tools are used to test components of a software system by simulating an environment in which that test object will execute. A test harness provides stubs and drivers, which are small programs that interact with the software application under test to identify and localize any defects. In addition, the stubs and drivers transmit information that the software application needs, including a display value. Test harness tools also provide an execution framework in middleware, to test languages, operating systems, or hardware. Test harness tools are also called unit test framework tools because they focus on the component test level and help automate tests even as code is being developed.

Features of Test Harness Tools
Some of the features of test harness tools include:

· Supplying test input to the software being tested.

· Receiving outputs generated by the software being tested.

· Executing a set of tests within the framework or using the test harness.

· Recording the pass or fail results of each test framework tool.

· Storing test framework tools.

· Providing support for debugging framework tools.

· Applying coverage measurement at code level framework tools.

Features of Test Harness Tools
Test harness tools contain various features.

Feature

Description

Supply test input

Supplies test input to the software being tested.

Receive outputs

Receives output generated by the software being tested.

Execute a set of tests

Executes a set of tests within the framework or by using the test harness.

Record pass or fail results

Records the pass or fail results of each test framework tool.

Store tools

Stores test framework tools.

Provide support

Provides support for debugging framework tools.

Apply coverage measurement

Applies coverage measurement at code level framework tools.

Test Comparators
Definition:
Test comparators are types of testing tools used to compare the actual result produced by the software application under test with the expected result that it should produce. They help automate aspects of comparison by determining differences between files, databases, or test results. You can compare actual results of a test to the expected results for the test during test execution or post-execution. You can use test comparators to perform post-execution comparison, in which the comparison is performed after the test has finished executing and the software under test is no longer running. In addition, test comparators filter subsets of actual and expected results to compare them.

Example:
Consider a scenario where you need to compare a large set of records from a database with the expected contents of those records. In addition, you also need to compare the contents of an entire file with the expected contents of that file. You can use test comparators for post-execution comparison of such a large volume of data and get the correct result.

Test Comparators
Definition:
Test comparators are types of testing tools used to compare the actual result produced by a software application under test with the expected result that it should produce. They help automate aspects of comparison by determining differences between files, databases, or test results. You can compare the actual results of a test to the expected results for the test during test execution or post-execution. You can use test comparators to perform post-execution comparison, in which the comparison is performed after the test is executed and the software application under test is no longer running. In addition, test comparators filter subsets of actual and expected results.

Example:
Example of Test Comparators
Consider a scenario where you need to compare a large set of records from a database with the expected contents of those records. In addition, you also need to compare the contents of an entire file with the expected contents of that file. You can use test comparators for post-execution comparison of such a large volume of data and obtain the correct result.

Coverage Measurement Tools
Coverage measurement tools are used to identify coverage items in program code. Coverage items in code typically are lines of code in the form of statements, branches or decisions, and module or function calls. By using this tool, you can count the number of coverage items that have been executed by the test suite, report on the percentage of coverage items that have been tested, and identify the items that have not yet been tested. In addition, you can execute more tests to increase coverage of items in code. The tool reports on the accumulated coverage of all executed tests and even identifies test input to execute items that are already covered.

Coverage Measurement Tools
Coverage measurement tools are used to identify and calculate coverage items in program code. Coverage items in code typically are lines of code in the form of statements, branches or decisions, and module or function calls. By using this tool, you can count the number of coverage items that have been executed by a suite, report on the percentage of coverage items that have been tested, and identify the items that have not yet been tested. In addition, you can execute more tests to increase coverage of items in code. The tool reports on the accumulated coverage of all executed tests and even identifies test input to execute items that are already covered.

Security Testing Tools
Security testing tools enable you to protect software systems from external attacks or computer viruses. External attacks may target a network, support software, application code, or an underlying database. Security testing tools can also be used to test security by trying to break into a system that is either protected by a security tool or unprotected. In addition, they are used to search for specific vulnerabilities of a system.

Security Testing Tools
Security testing tools enable you to test the security of software systems against external attacks or computer viruses. External attacks may target a network, support software, application code, or an underlying database. Security testing tools can also be used to test security by trying to break into a system that is either protected by a security tool or unprotected. In addition, they are used to search for specific vulnerabilities of a system.

Features of Security Testing Tools
Some of the features of security testing tools include:

· Identifying the number of viruses that may affect the software application under test.

· Detecting intrusions, such as denial of service attacks.

· Simulating various types of external attacks.

· Probing for potential points of attack or other externally visible points of attack.

· Identifying weaknesses in password files and passwords.

· Performing a security check during different operations such as checking integrity of files, detection of intrusion, and checking results of intrusion.

Features of Security Testing Tools
Security testing tools contain various features.

Feature

Description

Identify viruses

Identifies the number of viruses that may affect the software application under test.

Detect intrusions

Detects intrusions such as denial of service attacks.

Simulate attacks

Simulates various types of external attack.

Probe for potential points of attack

Probes into potential points of attack or other externally visible points of attack.

Identify weaknesses

Identifies weaknesses in password files and passwords.

Perform security checks

Performs security check during different operations such as checking integrity of files, detection of intrusion, and checking results of test attacks.

How to Implement Test Execution Tools

Procedure Reference: Verify Broken Links Using REL Link Checker Lite
To verify broken links using REL Link Checker Lite:

1. Launch the program.

2. Add a list of websites.

3. Select and verify all websites.

4. Retrieve links to websites.

5. Add selected links to the main list.

6. Select and verify all links.

Discovery Activity 10-6

Identifying Tools to Execute and Log Tests
Scenario:
Before you start using automation tools to execute and log tests for the online shopping portal of OGC Inc., you need to check your understanding of these tools and identify them to execute tests automatically and record tests.

1.

Which tool will you use to measure the coverage of source code?
a)
Security testing tool
b)
Test harness tool

c)
Coverage measurement tool
d)
Test comparator
2.

Which tool will you use to execute test cases and record manual tests?
a)
Coverage measurement tool

b)
Test execution tool
c)
Test harness tool
d)
Security testing tool
3.

Identify the scripting techniques for test execution tools.


a)
Data-driven testing

b)
Keyword-driven testing
c)
Capture-driven testing
d)
Keyhole-driven testing
4.

Which tool will you use for testing a central system to fetch the catalog information for the product, tea?
a)
Test execution tool
b)
Test comparator
c)
Coverage measurement

d)
Test harness tool
5.

Identify the features of security testing tools.
a)
Store information about review processes and sort review comments.


b)
Identify the number of viruses that may affect the software application under test.


c)
Detect intrusions, such as denial of service attacks.

d)
Identify weaknesses in password files and passwords.
e)
Communicate review comments to relevant people.
6.

True or False? Test comparators are used to perform post-execution comparison of tests.

a)
True
b)
False
7.

Which statements are true about a coverage measurement tool?


a)
It is used to count the number of coverage items that have been executed by a test suite.
b)
It is used to determine differences between files, databases, or test results.


c)
It is used to report the percentage of coverage items that have been tested.
d)
It is used to compare the actual result produced by the software under test with the expected result that it should produce.

e)
It is used to identify the items that have not yet been tested.
8.

Which tool will you use to test the security of credit card, PayPal, and feedback systems of OGC Inc.?
a)
Test harness tool

b)
Security testing tool
c)
Test comparator
d)
Coverage measurement tool
Activity 10-7

Validating Web Links Using REL Link Checker Lite
Setup:
Before You Begin:

Ensure that you configure LAN settings of Internet Explorer to its original settings.

Scenario:
As part of the automation tasks, you have analyzed the performance of a website using JMeter. In order to complete the testing task for the website, you need to use the REL Link Checker Lite tool that enables you to verify the website and locate broken hyperlinks in the website.

What You Do
How You Do It
1.

Launch the program and add the websites.

[image: image90]
If you are using the Linkchecker tool for the first time, you will get an About REL Lick Checker Lite window.

[image: image91]
If necessary, to set the proxy setting, choose View→Options. In the Options dialog box, select the Proxy tab. Check the Use proxy servers check box and check the HTTP Proxy check box. Set the Server and Port number and click OK.

a.

In the Explorer window, from the C:\Program Files\REL Link Checker Lite folder, double-click RELLC.exe.

c.

In the About REL Link Checker Lite window, check the Don't show this window again check box.

d.

Click Close.

e.

In the REL Link Checker Lite window, in the Address bar, type http://www.everythingforcoffee.com/

f.

Click the Add button to the right of the REL Link Checker Lite window.

g.

Repeat steps d and e for the websites http://www.citizensinfo.org/ and http://www.ourglobalcompany.com/

2.

Verify the websites.

[image: image92]
Or, choose Action→Select All.

[image: image93]
Or, choose Action→Verify.

a.

To select the websites, in the REL Link Checker Lite window, on the toolbar, click the Select All button.

b.

To verify the websites, on the toolbar, click the Verify button.

3.

Retrieve the hyperlinks from the selected website and add them to the main list.

[image: image94]
Or, choose Retrieve URLs.

[image: image95]
You need to wait for sometime while the links in the website are being verified.

a.

To open the Retrieve URLs from a web site window, on the toolbar, click the Retrieve button.

b.

In the Address bar, type the website http://www.everythingforcoffee.com/

c.

To the right of the Retrieve URLs from a web site window, click the Start button.

d.

To the left of the Retrieve URLs from a web site window, on the toolbar, click the Moves all marked URLs to the main list button.

e.

Repeat steps b, c, and d for the websites http://www.citizensinfo.org/ and http://www.ourglobalcompany.com/

g.

Close the Retrieve URLs from a web site window.

4.

Verify broken links in the websites and save the file.

[image: image96]
If the websites have broken links, they will be displayed in red. In this case there are no broken links on the websites.

a.

To select the links, in the REL Link Checker Lite window, on the toolbar, click the Select All button.

b.

To verify the broken links, in the REL Link Checker Lite window, on the toolbar, click the Verify button.

c.

Verify the broken links if any as shown on the screen.

e.

To open the Save As dialog box, choose File→Save.

f.

In the Save As dialog box, in the File name text box, type check_link

g.

To save the file, click Save.

h.

To close the REL Link Checker Lite window, choose File→Exit.

Activity 10-8

Validating Web Links Using REL Link Checker Lite
Scenario:
You need to automate the task of analyzing a website for the detection of broken links and other problematic links. In order to complete the testing task for the website, you need to use the REL Link Checker Lite tool which will enable you to locate broken hyperlinks in the website.

What You Do
How You Do It
1.

Launch the Lick Checker program and add the websites.

[image: image97]
If you are using the REL Link Checker Lite tool for the first time, the About REL Lick Checker Lite window will be displayed.

a.

In the C:\Program Files\REL Link Checker Lite folder, double-click RELLC.exe.

c.

In the About REL Link Checker Lite window, check the Don't show this window again check box.

d.

Click Close.

e.

In the REL Link Checker Lite window, in the Address bar, enter the address http://www.ourglobalcompany.com/

f.

Click the Add button to the right of the REL Link Checker Lite window.

2.

Verify the website, retrieve the hyperlinks from the selected website, and add them to the main list.

[image: image98]
Or, choose Action→Verify.

[image: image99]
Or, choose Retrieve URLs.

[image: image100]
You need to wait for sometime while the links in the website are verified.

a.

To verify the website, on the toolbar, click the Verify button.

b.

To open the Retrieve URLs from a web site window, in the REL Link Checker Lite window, on the toolbar, click the Retrieve button.

c.

In the Retrieve URLs from a web site window, in the Address bar, enter the address http://www.ourglobalcompany.com/

d.

To the right of the Retrieve URLs from a web site window, click the Start button.

e.

To the left of the Retrieve URLs from a web site window, on the toolbar, click the Moves all marked URLs to the main list button.

f.

Close the Retrieve URLs from a web site window.

3.

Check the broken links in the website and save the file.

[image: image101]
If the websites have broken links, they will be displayed in red.

a.

To select the links, in the REL Link Checker Lite window, on the toolbar, click the Select All button.

b.

To verify the broken links, in the REL Link Checker Lite window, on the toolbar, click the Verify button.

c.

Verify the broken links, if any.

e.

To open the Save dialog box, choose File→Save.

f.

In the Save dialog box, in the File Name text box, type check_link

g.

To save the file, click Save.

h.

To close the REL Link Checker Lite window, choose File→Exit.

Topic F

Implement Performance Testing and Monitoring Tools

You implemented and identified tools to execute and log tests. Now you may want to know about test automation tools to test software performance and monitor testing. In this topic, you will identify and implement performance testing and monitoring tools.

When you test drive a car, you would check whether the car performs according to your expectations and turns right when you turn the steering wheel clockwise. In addition, if you were to check the oil pressure or the brake fluid dynamically, you can do it only when the engine is running. Similarly, to test the performance of software, you need to ensure that the software is running and use the performance testing and monitoring tools to report on how a system behaves under a variety of simulated usage conditions, and report on the usage of specific system resources.

Now you may want to know about test automation tools to test software performance and monitor testing. In this topic, you will identify and implement performance testing and monitoring tools.

Dynamic Analysis Tools
Dynamic analysis tools are used to find defects in code even as a software application is running. These tools enable you to analyze code when the software application is executed with test cases or used in an operation. These tools are generally used by developers in component testing and component integration testing and enable you to:

· Detect memory leaks in the software system.

· Identify pointer arithmetic errors such as null pointers in code.

· And, identify time dependencies.

Example of Dynamic Analysis Tools
Consider a situation where the response time of a computer gets slower over time. The speed of the computer improves when you reboot it. This signifies that the slow speed of the computer is due to a memory leak, where the programs do not correctly release blocks of memory back to the operating system. Eventually, the system will run out of memory completely and stop functioning.

Dynamic Analysis Tools
Dynamic analysis tools are used to find defects in code when a software application is running. These tools enable you to analyze code when the software application is executed with test cases or used in an operation. These tools are generally used by developers in component testing and component integration testing and enable you to:

· Detect memory leaks in the software system.

· Identify pointer arithmetic errors such as null pointers in code.

· Identify time dependencies.

Example of Dynamic Analysis Tools
Consider a situation where the response time of a computer gets slower over time. The speed of the computer improves when you reboot it. This signifies that the slow speed of the computer is due to a memory leak, where the programs do not correctly release blocks of memory back to the operating system. Eventually, the system will run out of memory completely and stop functioning.

Performance Testing Tools
Definition:
A performance testing tool is a type of testing tool that you can use to determine the speed or effectiveness of a computer, network, or software program by simulating the load on the software system. It enables you to monitor and report on the behavior of a software system under a number of simulated conditions. These tools are mainly concerned with testing at system level to see whether or not the software system can bear the high volume of usage. Based on different aspects of performance such as load or stress, you can name the tools as load or stress testing tools. They are often based on automated repetitive execution of tests, controlled by parameters.

In order to assess the performance of a software system, the tool software needs to generate some activity on the system in different ways. The tool software runs on a different computer than the one used to run the application under test. It observes interactions among computers on the network by analyzing network traffic. A performance tool computer can record and play back an infinite number of client computer sessions to a very large number of servers. You can either repeat the same transaction multiple times or replicate the end-user environment or user profiles to achieve the results. Such actions are collectively called background touchpoints and are observed by developers but not by end users.

Example:
Consider a client/server computing architecture where workload is distributed between the end-user’s computer and one or more specialized server computers. On a bank's website it is very common to have multiple, simultaneous users performing different actions. These actions not only increase network traffic but also the load on the servers. The clients, servers, and communication protocols of a network all have an impact on the test results. Usually, the total response time of an application is the sum of the processing times on all computers connected and of all communication times.

Other Performance Testing Tools
A load testing tool checks that the software system can cope with its expected number of transactions and evaluates the behavior of a system with increasing load such as large numbers of parallel users. A stress testing tool is used to evaluate and determine the stability of a software system at or beyond the normal expected usage of the system with respect to load, or reduced availability of resources. On the other hand a volume testing tool checks that the system can cope with a large amount of data such as many fields in a record or many records in a file.

Special Consideration for the Performance Testing Tool
You need some expertise in performance testing to help design the tests and interpret the results. In order to get the best result from a performance testing tool, it is important to understand the functions that the tool can and cannot perform. In performance testing, you check nonfunctional quality characteristics such as the transaction throughput, degree of accuracy of a given computation, resources being used for a given level of transactions, time taken for certain transactions, the number of users who can use the system at once. You need to take into account certain issues with performance testing tools, including:

· The design of the load to be generated by the tool.

· Timing aspects such as delays to make simulated user input more realistic.

· The length of the test and the subsequent action if a test stops prematurely.

· Narrowing down the location of a bottleneck.

· Different aspects to measure such as user interaction level or server level.

· Ways to present the information gathered.

Performance Testing Tools
Definition:
A performance testing tool is a type of testing tool that you can use to determine the speed or effectiveness of a computer, network, or software program by simulating the load on the software program. It enables you to monitor and report on the behavior of a software system under a number of simulated conditions. These tools are mainly related to testing at system level to check whether or not the software system can bear the high volume of usage. Based on the different aspects of performance such as load or stress, you can name the tools as load or stress testing tools. These tools are often based on automated repetitive execution of tests, controlled by parameters.

In order to assess the performance of a software system, the tool software needs to generate some activity on the system in different ways. The tool software runs on a different computer than the one used to run the application under test. It observes interactions among computers on a network by analyzing network traffic. A performance tool computer can record and play back an infinite number of client computer sessions to a very large number of servers. You can either repeat the same transaction multiple times or replicate the end-user environment or user profiles to achieve the results. Such actions are collectively called background touchpoints and are observed by developers but not by end users.

Example:
Example of Performance Testing Tools
Consider a client/server computing architecture where workload is distributed between the end-user’s computer and one or more specialized server computers. On a bank's website it is very common to have multiple, simultaneous users performing different actions. These actions not only increase network traffic but also increase the load on the server or servers. The clients, servers, and communication protocols of a network have an impact on the test results. Usually, the total response time of an application is the sum of the processing times on all computers connected and of all communication times.

Other Performance Testing Tools
A load testing tool checks that the software system can cope with its expected number of transactions and evaluates the behavior of a system with increasing load such as large numbers of parallel users. A stress testing tool is used to evaluate and determine the stability of a software system at or beyond the normal expected usage of the system with respect to load, or reduced availability of resources. On the other hand, a volume testing tool checks whether the system can cope with a large amount of data such as many fields in a record or many records in a file.

Special Consideration for Performance Testing Tool
You need some expertise in performance testing to help design tests and interpret results. In order to get the best result from a performance testing tool, it is important to understand the functions that the tool can perform and the functions that it cannot perform. In performance testing, you check nonfunctional quality characteristics such as the transaction throughput, degree of accuracy of a given computation, resources being used for a given level of transaction, time taken for certain transactions, and number of users who can use the system at once. You need to consider certain issues with performance testing tools, including:

· The design of the load to be generated by the tool.

· Timing aspects such as delays to make simulated user input more realistic.

· The length of the test and the subsequent action if a test stops prematurely.

· Narrowing down the location of a bottleneck.

· Different aspects to measure such as user interaction level or server level.

· Ways to present the information gathered.

Features of Performance Testing Tools
Some of the features of performance testing tools include:

· Generating load on the software system to be tested.

· Measuring the timing of specific transactions as the load on the system varies.

· Measuring average response times.

· Creating graphs or charts of responses over time.

Features of Performance Testing Tools
Performance testing tools contain various features.

Feature

Description

Generate load

Generates load on the software system to be tested.

Measure timing

Measures the timing of specific transactions as the load on the system varies.

Measure response time

Measures average response times.

Create graphs

Creates graphs or charts of responses over time.

Types of Performance Testing Tools
There are several performance testing tools to determine the speed or effectiveness of a computer, network, or software program. The table lists some of the performance testing tools.

Performance Testing Tool

Description

JMeter

It is an automation tool from the Apache Software Foundation. It is a Java desktop application that allows you to test functional behavior and measure performance of services with a focus on web applications. You can also use it to test performance on static and dynamic resources such as files, Perl scripts, java objects, databases, and queries. In addition, you can use this tool to simulate a heavy load on a server, network, or object to test its strength or to analyze overall performance under different load types by using a graphical analysis of performance.

LoadRunner

It is an automation tool that you can use to measure the behavior and performance of the system, while generating actual load. Using LoadRunner, you can generate load on the application by using multiple concurrent users. The tool gathers information from different servers. Finally, the results are analyzed to identify the reasons for a particular behavior of the system.

SilkPerformer

It is an automation tool that you can use to optimize the performance of business applications. It measures the performance of an application from an end-user perspective. In addition, it monitors system performance under different conditions such as dynamic load conditions.

Features of JMeter
The features of JMeter include:

· Performs load and performance testing for different types of servers.

· Provides faster operation and precise timing in performing testing tasks.

· Provides dynamic input to a test.

· Performs caching and offline analysis of test results.

Features of JMeter
JMeter contains various features.

Feature

Description

Perform load and performance testing

Performs load and performance testing for different types of servers.

Provide faster operation

Provides faster operation and precise timing in performing testing tasks.

Provide dynamic input

Provides dynamic input to a test.

Perform caching

Performs caching and offline analysis of test results.

Monitoring Tools
Monitoring tools are used to continuously keep track of the status of a system. You can use these tools to analyze, verify, and report on usage of specific system resources, and also issue warnings of possible service problems. These tools provide information that can be used for testing purposes. This information cannot be obtained by any other means. In addition, they store information about the version and build of the software and testware, and enable traceability. There are specific tools to monitor security, performance, and website and Internet usage. Also there are specific monitoring tools for servers, networks, databases, and applications.

Features of Monitoring Tools
Some of the features of monitoring tools include:

· Identify service problems and send warning messages to the administrator.

· Log real-time and historical information.

· Find optimal settings for the system.

· Monitor the number of users on a network.

· Monitor network traffic dynamically or during a given length of time of operation with the analysis performed later.

Features of Monitoring Tools
Monitoring tools contain various features.

Feature

Description

Identify service problems

Identifies service problems and sends warning messages to the administrator.

Log information

Logs real-time and historical information.

Find optimal settings

Finds optimal settings for a system.

Monitor the number of users

Monitors the number of users on a network.

Monitor network traffic

Monitors network traffic dynamically or during a given length of time of operation with the analysis performed later.

How to Implement Performance Testing and Monitoring Tools

Procedure Reference: Test Websites Using JMeter
To test websites using JMeter:

1. Create a new thread group.

2. Create an HTTP configuration element and set the HTTP details:

· Protocol

· Web server name

· Port number

3. Create a proxy server with relevant details:

· Port number

· URL patterns to include

· URL patterns to exclude

4. Configure LAN settings of Internet Explorer.

5. Create and display the aggregate report.

Discovery Activity 10-9

Understanding Performance Testing and Monitoring Tools
Scenario:
You have been assigned the task of monitoring and reporting on how the online shopping portal of OGC Inc. behaves under a variety of simulated usage conditions. Before implementing the tools to monitor the performance of the system, you may want to check your understanding of performance testing and monitoring tools and identify them to report about the behavior of a software system.

1.

Which tool will you use to detect memory leak in the software system?
a)
Static analysis tools
b)
Coverage measurement tools

c)
Dynamic analysis tools
d)
Test data preparation tools
2.

True or False? A performance tool computer can record and play back an infinite number of client computer sessions to a very large number of servers.

a)
True
b)
False
3.

Which statements are true about the performance testing tool?
a)
It is used to test the functionality of software as mentioned in software requirement specifications.


b)
It is used to determine the speed or effectiveness of a computer, network, or software program.

c)
It works in conjunction with load and stress testing tools.
d)
It enables you to create test cases by generating test inputs or executable tests from requirements.
4.

Which tool will you use to send warning messages of possible system problems?
a)
Static analysis tools
b)
Performance testing tools
c)
Dynamic analysis tools

d)
Monitoring tools
5.

Which tool will you use to test the behavior of a system with increasing load of a large number of parallel users?
a)
Dynamic analysis tool
b)
Monitoring tool

c)
Load testing tool
d)
Test harness tool
6.

True or False? Load testing emphasizes testing the performance of a system under load while stress testing emphasizes breaking load.

a)
True
b)
False

	Activity 10-10

Testing Performance Using JMeter
Setup:
Before You Begin:

1. Ensure that the home page of the web browser is set to a blank page.

2. Ensure that you have noted the IP address of the proxy server.

Scenario:
You have performed manual testing in the testing process. You need to move from manual testing to automated testing by selecting an automated tool called JMeter. As a first step, you need to test the performance of different HTML pages on a website. In addition, you will create a test plan by using the proxy of JMeter, which is used to record the requests sent to the server. Finally, you will execute the tests to analyze the performance of the website.

What You Do
How You Do It
1.

Start JMeter and create a new thread group in the test plan.

a.

To open the command prompt, choose Start→All Programs→Accessories→Command Prompt.

c.

At the command prompt, enter cd C:\jakarta-jmeter-2.3.2\bin

d.

At the command prompt, type jmeter.bat -H followed by the IP address of the proxy server, and then type –P followed by the port number.

f.

To the left of the Apache JMeter window, right-click Test Plan.

h.

Choose Add→Thread Group.

2.

Add an HTTP configuration element for the new thread group.

[image: image104]
Ensure that the Path text box is blank.

a.

Right-click Thread Group.

c.

Choose Add→Config Element→HTTP Request Defaults.

d.

In the HTTP Request Defaults panel, in the Web Server section, in the Server Name or IP text box, type everythingforcoffee.com

e.

In the Port Number text box, type 80

f.

In the HTTP Request section, in the Protocol (default http) text box, type HTTP

3.

Create a proxy server with relevant details.

[image: image105]
Ensure that you enter the correct include and exclude patterns. Some of the patterns are: .*\.gif , .*\.jpg , .*\.php, and .*\.htm

a.

In the left pane of the Apache JMeter window, right-click WorkBench.

c.

Choose Add→Non-Test Elements→HTTP Proxy Server.

d.

In the HTTP Proxy Server panel, in the Port text box, double-click to select the text and type 9090

e.

In the Test plan content section, from the Target Controller drop-down list, select Test Plan > Thread Group.

f.

In the URL Patterns to Include section, click the Add button.

g.

In the URL Patterns to Include section, in the URL Patterns to Include text box, type .*\.html

h.

In the URL Patterns to Exclude section, click the Add button.

i.

In the URL Patterns to Exclude section and, in the URL Patterns to Exclude text box, type .*\.gif

j.

In the Apache JMeter window, click the Start button.

4.

Start Internet Explorer, configure LAN settings, and browse the JMeter web page.

[image: image106]
The test field for Address and Port will be activated.

a.

To open the web browser, choose Start→Internet Explorer.

c.

In the Internet Explorer window, choose Tools→Internet Options.

d.

In the Internet Options dialog box, select the Connections tab.

e.

In the Connections tab, click the LAN settings button.

f.

In the Local Area Network (LAN) Settings dialog box, in the Proxy server section, check the Use a proxy server for your LAN check box.

g.

In the Proxy server section, in the Address text box, type localhost

h.

In the Port text box, type 9090

i.

To close the Local Area Network (LAN) Settings dialog box, click OK.

j.

To close the Internet Options dialog box, click OK.

k.

In the Internet Explorer window, in the Address bar, enter http://www.everythingforcoffee.com/index.html

l.

On the home page of everythingforcoffee, click a few hyperlinks.

n.

Close the Internet Explorer window.

5.

Review the test plan and create an aggregate report.

[image: image107]
Ensure that the Ramp-Up Period (in seconds) text box is blank.

a.

In the left pane of the Apache JMeter window, right-click Thread Group.

c.

Choose Add→Listener→Aggregate Report.

d.

Select Thread Group.

e.

In the Thread Group panel, in the Thread Properties section, in the Number of Threads (users) text box, double-click and type 5

f.

In the Loop Count text box, double-click and type 100

6.

Save the test plan, execute tests, and display the aggregate report.

[image: image108]
Or, press Ctrl+R.

a.

In the Apache JMeter window, choose File→Save Test Plan as.

b.

In the Save dialog box, in the File Name text box, type check_performance

c.

To save the test plan, click Save.

d.

To run the test, choose Run→Start.

e.

To view the change in details, select Aggregate Report.

f.

Observe the aggregate report on the screen.

g.

To close the Apache JMeter window, choose File→Exit.

Activity 10-11

Testing Performance Using JMeter
Setup:
Before You Begin:

1. Ensure that the home page of the web browser is set to a blank page.

2. Ensure that you have noted the IP address of the proxy server.

Scenario:
As part of the automation tasks, you have verified the website and located broken hyperlinks in the website. In order to complete the testing task for the website, you need to use the JMeter tool to test the performance of different HTML pages on a website. In addition, you will create a test plan by using the proxy of JMeter, which is used to record the requests sent to the server. Finally, you will execute the tests to analyze the performance of the website.

What You Do
How You Do It
1.

Start JMeter and create a thread group in the test plan.

a.

To open the command prompt, choose Start→Programs→Accessories→Command Prompt.

b.

Enter cd C:\jakarta-jmeter-2.3.2\bin

c.

Type jmeter.bat -H followed by the IP address of the proxy server, and then type –P followed by the port number.
See Code Sample 1.

d.

To the left of the Apache JMeter window, right-click Test Plan.

e.

Choose Add→Thread Group.

Code Sample 1
jmeter.bat -H 172.17.48.178 -P 80

2.

Add an HTTP configuration element for the new thread group.

[image: image109]
Ensure that the Path text box is blank.

a.

Right-click Thread Group.

b.

Choose Add→Config Element→HTTP Request Defaults.

c.

In the HTTP Request Defaults panel, in the Web Server section, in the Server Name or IP text box, type ourglobalcompany.com

d.

In the HTTP Request section, in the Protocol (default http) text box, type HTTP

e.

In the Port Number text box, type 80

3.

Create a proxy server with relevant details.

[image: image110]
Ensure that you enter the correct include and exclude patterns. Some of the patterns are: .*\.gif , .*\.jpg , .*\.php, and .*\.htm
[image: image111]
If the Windows Security Alert dialog box is displayed, click the Unblock button. Ensure that the Apache JMeter window is active and open.

a.

In the left pane of the Apache JMeter window, right-click WorkBench.

b.

Choose Add→Non-Test Elements→HTTP Proxy Server.

c.

In the HTTP Proxy Server panel, in the Port text box, type 9090

d.

In the Test plan content section, from the Target Controller drop-down list, select Test Plan > Thread Group.

e.

In the URL Patterns to Include section, click Add.

f.

Click the URL Patterns to Include text box and type .*\.html

g.

In the URL Patterns to Exclude section, click Add.

h.

Click the URL Patterns to Exclude text box and type .*\.gif

i.

In the Apache JMeter window, click Start.

4.

Start Internet Explorer, configure LAN settings, and browse the JMeter web page.

[image: image112]
The test fields for the Address and Port will be activated.

a.

To open the web browser, choose Start→Internet Explorer.

b.

In the Internet Explorer window, choose Tools→Internet Options.

c.

In the Internet Options dialog box, select the Connections tab.

d.

On the Connections tab, click LAN settings.

e.

In the Local Area Network (LAN) Settings dialog box, in the Proxy server section, check the Use a proxy server for your LAN check box.

f.

In the Proxy server section, in the Address text box, type localhost

g.

In the Port text box, type 9090

h.

To close the Local Area Network (LAN) Settings dialog box, click OK.

i.

To close the Internet Options dialog box, click OK.

j.

In the Internet Explorer window, in the Address bar at the top, enter http://www.ourglobalcompany.com/index.html

k.

On the home page of ourglobalcompany, click the links Our Company and Clients & Partners.

l.

To close the Internet Explorer window, choose File→Exit.

5.

Review the test plan and create an aggregate report.

[image: image113]
Ensure that the Ramp-Up Period (in seconds) text box is blank.

a.

In the left pane of the Apache JMeter window, right-click Thread Group.

b.

Choose Add→Listener→Aggregate Report.

c.

Select Thread Group.

d.

In the Thread Group panel, in the Thread Properties section, in the Number of Threads (users) text box, enter 5

e.

In the Loop Count text box, enter 100

6.

Save the test plan, execute the tests, and display the aggregate report.

[image: image114]
Or, Press Ctrl+R

a.

In the Apache JMeter window, choose File→Save Test Plan as.

b.

In the Save dialog box, in the File Name text box, enter check_performance

c.

To save the test plan, click Save.

d.

To run the test, choose Run→Start.

e.

To view the change in details, select Aggregate Report.

f.

Verify the aggregate report on the screen.

h.

To close the Apache JMeter window, choose File→Exit.

Topic G

Identify Other Testing Tools

You identified performance testing and monitoring tools. In addition to the myriad testing tools that fall under different categories, there are a few more testing tools that help you perform other testing activities. In this topic, you will learn about the tool types that do not fall under the test management, test specification, test execution, and performance testing and monitoring tool categories.

An understanding of the various testing tools will enable you to suggest and implement the most appropriate tools for automating various tasks related to testing. Consider a scenario where you have identified testing tools for performing testing activities such as test management, execution, specification, and performance. You need to perform other testing tasks such as identifying defects in source code, measuring the behavior of a program, or ensuring the conformance of a computer program to a defined set of standards. Knowledge of tools required to perform miscellaneous testing activities enables you to select the appropriate tools.

Functional Testing Tools
Definition:
A functional testing tool is a type of testing tool that you can use to test the functionality of software as mentioned in the software requirement specifications. By using functional testing tools, you can perform actions directly on your computer in a manner that seems as if the users were performing them on their computer. Such operation is known as the autopilot or robot mode. The autopilot mode in functionality testing records actions from the keyboard, mouse, and monitor. Such actions are collectively called foreground touchpoints and are observed by developers and end users. Functional testing is implemented by the software that runs on the same computer as the application under test. The relationship between the tool computer and the test computer is important because the tool software directly observes the interactions on the keyboard, mouse, and monitor. However, this relationship represents a computer resource testing constraint. In addition, functional testing tools are especially useful in regression testing in which actions from the keyboard, mouse, and monitor are recorded for all inputs.

Example:
Consider a scenario where you need to perform functional testing for 1000 inputs of integer or decimal values to calculate the aggregate of marks. Performing this test manually will involve a lot of effort. Therefore, you can automate this testing task to achieve realistic and accurate results.

Functional Testing Tools
Definition:
A functional testing tool is a type of testing tool that can be used to test the functionality of software as mentioned in the software requirement specifications. By using functional testing tools, you can perform actions directly on your computer in a manner that seems as if the users were performing them on their computer. Such an operation is known as the autopilot or robot mode. The autopilot mode in functionality testing records actions from the keyboard, mouse, and monitor. Such actions are collectively called foreground touchpoints and are observed by developers and end users.

Functional testing is implemented by a software application that runs on the same computer as the application under test. The relationship between the tool computer and the test computer is significant because the tool software directly observes the interactions on the keyboard, mouse, and monitor. However, this relationship represents a computer resource testing constraint.

Example:
Example of Functional Testing Tools
Consider a scenario where you need to perform functional testing for 1000 inputs of integer or decimal values to calculate the aggregate of marks. Performing this test manually will involve a lot of effort. Therefore, you can automate this testing task to achieve realistic results. Functional testing tools are especially useful in regression testing in which actions from the keyboard, mouse, and monitor are recorded for all inputs.

Source Code Testing Tools
A source code testing tool is a type of testing tool that can be used to identify and fix defects in program code. The software tester may either use SQL to set up and query databases containing test data or use tools for debugging program code. Debugging tools enable you to help localize defects and verify that they are fixed. They are primarily used by software developers to identify and fix defects. In addition, they enable software developers to run individual and localized tests to ensure that they have correctly identified the cause of a defect and the solution to fix the defect.

[image: image117]
Structured Query Language (SQL) is a language to access and manipulate large volumes of data stored on a computer system.

Profilers
A profiler is a performance analysis tool that can be used to measure the behavior of a program using information gathered during program execution. Profilers use different techniques such as hardware interrupts, code instrumentation, or instruction set simulation to gather information. By using this tool, you can determine which sections of a program need to be optimized to increase its speed, decrease its memory requirement, or both. Besides measuring the totality of a program's behavior from its invocation to termination, the profiler can evaluate the compatibility of programs on new architectures.

Metrics Calculators
A metrics calculator helps you identify the worth of testing at each phase by collecting metrics. These tools can provide you with the coverage of requirements, test cases, defects, test execution, and more. For example, a quality center can generate a test metric using current data to show the current status of testing.

Integration Management Tools
Integration management tools are used to provide the integration of different kinds of tools to make test management more efficient and easy. They support the project management aspects of testing such as scheduling tests, logging test results, and managing incidents raised during testing. In addition, they provide complete integration of various kinds of testing tools such as defect tracking, automated scripts for functional or load testing, requirements capture, the test plan, and test case integration.

Support Tools
Nonfunctional techniques often execute tasks using supporting tools to analyze dynamic system activities such as memory usage and concurrent thread. Support tools also provide testing support to any software under test (SUT) where no appropriate environment is available. These tools use simulators and emulators to provide the supporting environment to the SUT. You can also use support tools to automate the process of review and inspection.

Types of Support Tools
The table lists some of the support tools.

Support Tool

Description

Process Manager

Enables creation and publishing of process descriptions and templates.

ReviewPro

Provides web-based support for any review or inspection process. In addition, it also provides administrative, communication, and configuration support.

Documentation Tools
Documentation tools are used to provide support for and automation of managing various testing documents, such as the test policy, test strategy, and test plan. By using these tools, you can place the documents in a central location so that they can be accessed by people in multiple locations. In addition, documentation tools simplify the review and inspection of documents and enable you to relate and refer to all documents. You can use configuration and test management tools to provide support for documentation tools.

Protocol Testing Tools
Protocol testing tools are used to test various kinds of protocols. By using these tools, you can measure whether a message or signal can travel through different protocols to reach the desired target machine or application. In addition, these tools help detect various defects related to communication or compatibility among different software applications or protocols. For example, LoadRunner provides support for more than 15 protocols to capture network traffic using protocols for performance testing.

Conformance Testing Tools
Conformance testing tools are used to check whether a software product, process, computer program, or system adheres to a defined set of standards, conventions, or regulations in laws and similar specifications. The requirements or criteria for conformance are generally specified in a conformance clause or conformance statement. In addition, these tools enable you to determine the extent to which a single implementation of a particular standard conforms to individual requirements of that standard.

Debugging Tools
Debugging tools are used by developers to identify and fix defects in program code to ensure that it functions properly. They enable programmers to run individual and localized tests to correctly identify the cause of a defect and confirm that any modification in code will fix the defect. By using debugging tools, the developer can monitor the execution of a program, stop or restart it, set breakpoints, and change values in memory.

Debugging Tools
Debugging tools are used by developers to identify and fix defects in program code to ensure that it functions properly. They enable programmers to run individual and localized tests to correctly identify the cause of a defect and confirm that any modification in code will fix the defect. By using debugging tools, the developer can monitor the execution of a program, stop or restart it, set breakpoints, and change values in memory.

Tools for Specific Application Areas
Each specific application area requires a specialized testing tool. Some of the specialized testing tools include:

· Performance testing tools for web-based applications and back-office systems.

· Static analysis tools for specific development platforms and programming languages.

· Dynamic analysis tools for testing security aspects and embedded systems.

· And, commercial toolsets for web-based or embedded systems.

Activity 10-12

Identifying Other Testing Tools
Scenario:
You have been assigned the task of implementing testing tools such as functional testing, source code testing, and debugging tools for the online shopping portal of OGC Inc. Before implementing the tools to perform different testing tasks, you need to check your understanding of other testing tools and identify them to perform different testing tasks.

1.

Which tools will you use to identify defects in source code?
a)
Conformance testing


b)
Debugging tool
c)
Functional testing tool

d)
Source code testing tool
2.

Which tool will you use to record actions from the keyboard, mouse, and monitor while testing a software application?
a)
Source code testing tool
b)
Debugging tool

c)
Functional testing tool
d)
Conformance testing tool
3.

Which statements are true about a source code testing tool?
a)
It is used to check that a software product, process, computer program, or system adheres to a defined set of standards.


b)
It is used to identify defects in program code and enables you to fix defects.
c)
It is used to test the functionality of software.

d)
It enables you to help localize defects and verify that they are fixed.
4.

Which tool will you use to measure the behavior of a program using information gathered during program execution?
a)
Functional testing tool
b)
Source code testing tool
c)
Debugging tool

d)
Profiler
Topic H

Introduce Tools into an Organization

You identified different testing tools available to perform testing activities. Now you may want to determine the factors for introducing a tool into an organization. In this topic, you will introduce tools into an organization.

It is important to consider different factors such as strengths and weaknesses of an organization and its readiness for interiorizing the tool. Consider a situation where you wish to introduce a testing tool within the organization. Before introducing the tool, you need to ensure that it matches the needs within the organization and addresses them efficiently. In addition, you need to ensure that the testing tool enables the organization to reduce repetitive work, achieve consistency and repeatability, and benefit from various other possibilities that the tool offers.

Now you may want to determine the factors for introducing a tool into an organization. In this topic, you will introduce tools into an organization.

Considerations to Select a Tool for an Organization
You can introduce a tool within an organization to provide benefits and solve the organizational need in a cost-effective way.

Guidelines:
Apply these guidelines while selecting a tool:

· Assess the readiness of the organization in terms of organizational maturity, strengths and weaknesses before the introduction of the new tool.

· Evaluate the tool against clear requirements and objective criteria of the organization.

· Identify areas within the organization where tool support will help to improve testing processes.

· Analyze the proof-of-concept to see whether the desired product meets the requirements and objectives defined.

· Evaluate the vendor for training, support, and other commercial aspects.

· Identify and plan internal implementation such as coaching and mentoring facilities for people who are using the tool for the first time.

Example:
Our Global Company is an IT organization that develops telecom software. Andrea Lin, the Project Manager, needs to select a tool to automate different testing tasks for a product. In order to select a correct tool, Andrea needs to ensure that the organization is ready for the changes that will occur with the introduction of the new tool. She evaluates the tool against the objective criteria of the organization. In addition, she identifies different areas within the organization to improve the testing processes. Finally, she needs to identify coaching and mentoring facilities for the people who will be using the tool for the first time.

Considerations to Select a Tool for an Organization
You can introduce a tool within an organization to provide benefits and solve the organizational need in a cost-effective way.

Guidelines:
Apply these guidelines while selecting a tool:

· Assess the readiness of the organization in terms of organizational maturity, strengths and weaknesses before the introduction of the new tool.

· Evaluate the tool against clear requirements and objective criteria of the organization.

· Identify areas within the organization where tool support will help to improve testing processes.

· Analyze the proof-of-concept to see whether the desired product meets the requirements and objectives defined.

· Evaluate the vendor for training, support, and other commercial aspects.

· Identify and plan internal implementation such as coaching and mentoring facilities for people who are using the tool for the first time.

Example:
Our Global Company is an IT organization that develops telecom software. Andrea Lin, the Project Manager, needs to select a tool to automate different testing tasks for a product. In order to select a correct tool, Andrea needs to ensure that the organization is ready for the changes that will occur with the introduction of the new tool. She evaluates the tool against the objective criteria of the organization. In addition, she identifies different areas within the organization to improve the testing processes. Finally, she needs to identify coaching and mentoring facilities for the people who will be using the tool for the first time.

Objectives of a Pilot Project
To ensure that the introduction of a new tool in the organization meets the requirements and objectives defined, you need to launch a pilot project. Some of the objectives for a pilot project for a new tool include:

· Exploring different ways to use the tool on a small scale.

· Understanding the workings of the tool in detail.

· Finding ways to solve problems encountered during the use of the tool so that it can be used by everyone later on.

· Experimenting with different ways to use the tool such as using different settings for a static analysis tool or different reports from a test management tool.

· Assessing whether or not the tool can accomplish organizational goals.

· Evaluating how the tool would be used to:

· Incorporate changes into the existing testing process that would work well with the tool.

· Streamline existing testing processes.

· Finalizing standards for the tool that will work for all potential users. Some of the standards include:

· Using different naming conventions.

· Creating libraries.

· Defining modularity.

· Storing different elements.

· Maintaining the pilot project and the tool.

· Assessing whether benefits will be achieved at reasonable cost.

Objectives of a Pilot Project
To ensure that the introduction of a new tool in the organization meets the requirements and objectives defined, you need to launch a pilot project. Some of the objectives for a pilot project for a new tool include:

· Exploring different ways to use the tool on a small scale.

· Understanding the workings of the tool in detail.

· Finding ways to solve problems encountered during the use of the tool so that it can be used by everyone later on.

· Experimenting with different ways to use the tool, such as using different settings for a static analysis tool or different reports from a test management tool.

· Assessing whether or not the tool can accomplish goals related to testing.

· Evaluating how the tool would be used to:

· Incorporate changes into the existing testing process that would work well with the tool.

· Streamline existing testing processes.

· Finalizing standards for the tool that will work for all potential users. Some of the standards include:

· Using different naming conventions.

· Creating libraries.

· Defining modularity.

· Storing different elements.

· Maintaining the pilot project and the tool.

· Assessing whether benefits will be achieved at reasonable cost.

Success Factors for the Deployment of a Tool
In order to ensure that the deployment of an automation tool in an organization guarantees success, you need to follow correct guidelines for selecting a tool. Some of the factors that contribute to the success of the deployment of the tool within the organization include:

· Rolling out the tool to the rest of the organization incrementally.

· Adapting and improving testing processes, testware, and tool artefacts to fit with the use of the tool.

· Providing adequate training, coaching, and mentoring to new users of the tool.

· Defining and communicating guidelines for the use of the tool based on the lessons learned in the pilot project.

· Implementing a continuous improvement mechanism for widespread use of the tool in the organization.

· Monitoring the use of the tool and benefits achieved using the tool.

· Implementing ways to learn lessons using the tool.

Success Factors for the Deployment of a Tool
Deployment of an automation tool in an organization does not guarantee success. However, if you follow correct guidelines for selecting the tool, you can achieve success across the organization.

Guideline

Description

Incremental rollout

Roll out the tool to the rest of the organization incrementally.

Improve testing processes

Adapt and improve testing processes, testware, and tool artefacts to fit with the use of the tool.

Provide training

Provide adequate training, coaching, and mentoring to new users of the tool.

Define guidelines

Define and communicate guidelines for the use of the tool based on the lessons learned in the pilot project.

Implement improvement mechanisms

Implement a continuous improvement mechanism for widespread use of the tool in the organization.

Monitor tool

Monitor the use of the tool and benefits achieved using the tool.

Learn lessons

Implement ways to learn lessons using the tool.

Introduce Tools into an Organization

Procedure Reference: Introduce a Tool into an Organization
To introduce a tool into an organization:

1. Assess the readiness of the organization.

2. Evaluate tools against objective criteria of the organization.

3. Identify areas within the organization where tool support will improve the testing process.

4. Launch a pilot project that will use the tool.

Discovery Activity 10-13

Introducing Tools into an Organization
Scenario:
You have identified different automation tools used for performing various testing activities. In order to automate the testing of the online shopping portal of OGC Inc., you need to select testing tools to support the testing activities. However, due to budget constraints only two tools can be used for OGC Inc. You need to select the best tools out of the available tools.

· Test harness tool

· Security testing tool

· Performance testing tool

· Test execution tool

· Requirements management tool

1.

Identify the considerations before introducing a tool into an organization.
a)
Finalizing standards for the tool.


b)
Assess the readiness of the organization in terms of organizational maturity, strengths, and weaknesses, before the introduction of the new tool.
c)
Find ways to solve problems encountered during the use of the tool.

d)
Identify areas within the organization where tool support will help to improve testing processes.
2.

List the tools based on their priority of introducing in OGC Inc.

Answers will vary, but may include:1. Test harness tool 2. Security testing tool 3. Performance testing tool 4. Test execution tool 5. Requirements management tool

3.

List the reasons for selecting tools based on their priority.

Answers will vary, but may include:1. Test harness tool – This tool will enable you to test credit card and PayPal environments in the system integration testing phase; therefore, it will carry the risk in User Acceptance Testing if not tested in System Integration Testing. 2. Security testing – This tool will ensure that security testing is robust and easy. However, this is not mandatory because security testing can also be done manually. 3. Performance Testing – This tool enables you to simulate multiple users by generating load on the software system to be tested. 4. Test execution tool – This tool enables you to make the test execution cycle easy to manage. However, automation test execution is not mandatory and it can also be done manually. 5. Requirement management tool – This tool is not mandatory in the testing process because requirements can also be captured in simple Word document files.

4.

What are the different ways to ensure that the introduction of a new tool in the organization meets the requirements and objectives defined?

Answers will vary, but may include:To ensure that the introduction of a new tool in the organization meets the requirements and objectives defined, you need to launch a pilot project that will: 1. Explore different ways to use the tool. 2. Find ways to solve problems encountered during the use of the tool so that it can be used by everyone later on. 3. Assess whether benefits will be achieved at reasonable cost. 4. Finalize standards for the tool that will work for all potential users.

5.

Identify the success factors for the deployment of a tool into an organization.
a)
Monitoring the misuse of the tool.
b)
Rolling out the tool to the rest of the organization immediately.


c)
Adapting and improving testing processes, testware, and tool artefacts to fit with the use of the tool.

d)
Implementing a continuous improvement mechanism for widespread use of the tool in the organization.
Lesson 10 Follow-up
In this lesson, you identified and implemented different testing tools. Knowledge of different testing tools enables you to choose the most effective one for performing different testing activities. Implementing these tools increases testing efficiency and reliability by automating repetitive tasks.

1.

How will the use of testing tools affect the way you perform different testing activities?

Answers will vary, but may include:

Testing tools are reliable and enable you to automate different testing tasks, thereby reducing cost, time, and effort.

2.

How do you select testing tools for performing testing activities in your organization?

Answers will vary, but may include:

Before introducing testing tools in the organization, you evaluate them against clear requirements and objective criteria of the organization. In addition, you assess the readiness of the organization.

Course Follow-up

In this course, you prepared for the International Software Testing Qualifications Board (ISTQB) - Certified Tester Foundation Level (CTFL) certification. Obtaining this international certification in software testing accelerates your career growth because the ISTQB CTFL certification helps organizations develop confidence that people conducting testing have the required qualification to do their job right. In addition, this certification enables you to implement global testing methodologies in software testing.

1.

Is there any difference in the test process covered in this course and the process that is typically followed in your organization? Which process do you think is better?

Answers will vary, but may include:

The testing process is essentially the same, only the terminology used is different.

In case a different process is used, efforts should be made to bring it as close as possible to the testing process covered in this lesson because a lot of thinking has gone into formulating this generic process, and it works well for most software development projects.

2.

Which test-design techniques covered in this course are typically used in your organization? Discuss the different scenarios in which they are used.

Answers will vary, but may include:

You use specification-based and experience-based test design techniques for functional and nonfunctional testing. Structure-based techniques can be used to test the code which may not be executed while testing a functionality of a software product. Each technique is effective for only certain situations such as:

Scenario 1: You have to test an upgraded version of an application with no new functionality added. You can use structure-based techniques for covering newly developed code and, for functional testing, you can use test cases that were developed for the previous version.

Scenario 2: In case some requirements are not implemented in the software, you can use specification-based techniques to identify them. You cannot use structure-based techniques in such a case because they cannot test what is not implemented.

Scenario 3: In case some requirements are missing from requirements specification, experience-based techniques can be used to identify them.

3.

Which testing tasks can be automated in your organization? Which automation tools will you use?

Answers will vary, but may include:

Tasks related to automating functional testing such as capturing, verifying, and replaying user interactions can be automated. In addition, tasks related to measuring the performance of software being tested can also be automated. Tools such as WinRunner and LoadRunner can be used to automate these testing tasks.

What's Next?

This is the last course in the series.

Appendix A

Certified Tester, Foundation Level

Certified Tester, Foundation Level Exam Objectives

The following table indicates where Certified Tester Foundation Level exam objectives are covered in this course. For example, 1–A indicates that the objective is addressed in Lesson 1, Topic A.

Objective

Certified Tester, Foundation Level

1.1 Why is testing necessary?

1.1.1 Describe, with examples, the way in which a defect in software can cause harm to a person, to the environment or to a company.

2-A

1.1.2 Distinguish between the root cause of a defect and its effects.

2-A, 2-B

1.1.3 Give reasons why testing is necessary by giving examples.

2-A

1.1.4 Describe why testing is part of quality assurance and give examples of how testing contributes to higher quality.

2-B

1.1.5 Recall the terms error, defect, fault, failure and corresponding terms mistake and bug.

2-B

1.2 What is testing?

1.2.1 Recall the common objectives of testing.

2-A

1.2.2 Describe the purpose of testing in software development, maintenance and operations as a means to find defects, provide confidence and information, and prevent defects.

2-A

1.3 General testing principles

1.3.1 Explain the fundamental principles in testing.

2-C

1.4 The fundamental test process

1.4.1 Recall the fundamental test activities from planning to test closure activities and the main tasks of each test activity.

2-D

1.5 The psychology of testing

1.5.1 Recall that the success of testing is influenced by psychological factors:

· clear test objectives determine testers’ effectiveness

· blindness to one’s own errors

· courteous communication and feedback on defects

2-F

1.5.2 Contrast the mindset of a tester and of a developer.

2-F

2.1 Software development models

2.1.1 Understand the relationship between development, test activities and work products in the development life cycle, and give examples based on project and product characteristics and context.

1-A, 1-B, 1-C

2.1.2 Recognize the fact that software development models must be adapted to the context of project and product characteristics.

1-A, 1-B, 1-C

2.1.3 Recall reasons for different levels of testing, and characteristics of good testing in any life cycle model.

1-A, 1-B, 1-C

2.2 Test levels

2.2.1 Compare the different levels of testing: major objectives, typical objects of testing, typical targets of testing (e.g., functional or structural) and related work products, people who test, types of defects and failures to be identified.

3-A, 3-B, 3-C, 3-D

2.3 Test types

2.3.1 Compare four software test types (functional, nonfunctional, structural and change related) by example.

4-A, 4-B, 4-D, 4-E

2.3.2 Recognize that functional and structural tests occur at any test level.

4-A, 4-D

2.3.3 Identify and describe nonfunctional test types based on nonfunctional requirements.

4-B

2.3.4 Identify and describe test types based on the analysis of a software system’s structure or architecture.

4-D

2.3.5 Describe the purpose of confirmation testing and regression testing.

4-E

2.4 Maintenance testing

2.4.1 Compare maintenance testing (testing an existing system) to testing a new application with respect to test types, triggers for testing and amount of testing.

4-E

2.4.2 Identify reasons for maintenance testing (modification, migration and retirement).

4-E

2.4.3. Describe the role of regression testing and impact analysis in maintenance.

4-E

3.1 Static techniques and the test process

3.1.1 Recognize software work products that can be examined by the different static techniques.

4-C

3.1.2 Describe the importance and value of considering static techniques for the assessment of software work products.

4-C

3.1.3 Explain the difference between static and dynamic techniques.

4-C, 4-D

3.1.4 Describe the objectives of static analysis and reviews and compare them to dynamic testing.

4-C, 4-D

3.2 Review process

3.2.1 Recall the phases, roles and responsibilities of a typical formal review.

4-C

3.2.2 Explain the differences between different types of review: informal review, technical review, walkthrough and inspection.

4-C

3.2.3 Explain the factors for successful performance of reviews.

4-C

3.3 Static analysis by tools

3.3.1 Recall typical defects and errors identified by static analysis and compare them to reviews and dynamic testing.

4-C, 4-D

3.3.2 List typical benefits of static analysis.

4-C

3.3.3 List typical code and design defects that may be identified by static analysis tools.

4-C

4.1 The test development process

4.1.1 Differentiate between a test design specification, test case specification and test procedure specification.

7–A

4.1.2 Compare the terms test condition, test case and test procedure.

7–A, 8–A

4.1.3 Evaluate the quality of test cases. Do they:

· show clear traceability to the requirements.

· contain an expected result.

7–A

4.1.4 Translate test cases into a well-structured test procedure specification at a level of detail relevant to the knowledge of the testers.

7–A, 7–B

4.2 Categories of test design techniques

4.2.1 Recall reasons that both specification-based (black-box) and structure-based (white-box) approaches to test case design are useful, and list the common techniques for each.

6–A, 6–B

4.2.2 Explain the characteristics and differences between specification-based testing, structure-based testing and experience-based testing.

6–A, 6–B, 6–C

4.3 Specification-based or black-box techniques

4.3.1 Write test cases from given software models using the following test design techniques:

· equivalence partitioning

· boundary value analysis

· decision table testing

· state transition testing

6–A, 7–B

4.3.2 Understand the main purpose of each of the four techniques, what level and type of testing could use the technique, and how coverage may be measured.

6–A

4.3.3 Understand the concept of use case testing and its benefits.

6–A

4.4 Structure-based or white-box techniques

4.4.1 Describe the concept and importance of code coverage.

6–B

4.4.2 Explain the concepts of statement and decision coverage, and understand that these concepts can also be used at other test levels than component testing (e.g., on business procedures at system level).

6–B

4.4.3 Write test cases from given control flows using the following test design techniques:

· statement testing

· decision testing

6–B, 7–B

4.4.4 Assess statement and decision coverage for completeness.

6–B

4.5 Experience-based techniques

4.5.1 Recall reasons for writing test cases based on intuition, experience and knowledge about common defects.

6–C

4.5.2 Compare experience-based techniques with specification-based testing techniques.

6–C

4.6 Choosing test techniques

4.6.1 List the factors that influence the selection of the appropriate test design technique for a particular kind of problem, such as the type of system, risk, customer requirements, models for use case modeling, requirements models or tester knowledge.

6–C

5.1 Test organization

5.1.1 Recognize the importance of independent testing.

2-F

5.1.2 List the benefits and drawbacks of independent testing within an organization.

2-F

5.1.3 Recognize the different team members to be considered for the creation of a test team.

2-F

5.1.4 Recall the tasks of typical test leader and tester.

2-F

5.2 Test planning and estimation

5.2.1 Recognize the different levels and objectives of test planning.

5–A

5.2.2 Summarize the purpose and content of the test plan, test design specification and test procedure documents according to the ‘Standard for Software Test Documentation’ (IEEE 829).

5–E, 6–A, 8–A

5.2.3 Differentiate between conceptually different test approaches, such as analytical, model based, methodical, process/standard compliant, dynamic/heuristic, consultative and regression averse.

5–C

5.2.4 Differentiate between the subject of test planning for a system and for scheduling test execution.

5–A

5.2.5 Write a test execution schedule for a given set of test cases, considering prioritization, and technical and logical dependencies.

5–D

5.2.6 List test preparation and execution activities that should be considered during test planning.

5–A

5.2.7 Recall typical factors that influence the effort related to testing.

5–D

5.2.8 Differentiate between two conceptually different estimation approaches: the metrics based approach and the expert-based approach.

5–D

5.2.9 Recognize/justify adequate exit criteria for specific test levels and groups of test cases (e.g., for integration testing, acceptance testing or test cases for usability testing).

5–C

5.3 Test progress monitoring and control

5.3.1 Recall common metrics used for monitoring test preparation and execution.

8,A, 8-B, 9-A

5.3.2 Understand and interpret test metrics for test reporting and test control (e.g., defects found and fixed, and tests passed and failed).

9-A, 9-B

5.3.3 Summarize the purpose and content of the test summary report document according to the ‘Standard for Software Test Documentation’ (IEEE 829).

9-B

5.4 Configuration management

5.4.1 Summarize how configuration management supports testing.

5-A

5.5 Risk and testing

5.5.1 Describe a risk as a possible problem that would threaten the achievement of one or more stakeholders’ project objectives.

5–B

5.5.2 Remember that risks are determined by likelihood (of happening) and impact (harm resulting if it does happen).

5–B

5.5.3 Distinguish between the project and product risks.

5–B

5.5.4 Recognize typical product and project risks.

5–B

5.5.5 Describe, using examples, how risk analysis and risk management may be used for test planning.

5–B

5.6 Incident Management

5.6.1 Recognize the content of an incident report according to the ‘Standard for Software Test Documentation’ (IEEE 829).

8-C

5.6.2 Write an incident report covering the observation of a failure during testing.

8-C

6.1 Types of test tools

6.1.1 Classify different types of test tools according to the test process activities.

10-A

6.1.2 Recognize tools that may help developers in their testing.

10-A, 10-B, 10-C, 10-D, 10-E, 10-F, 10-G

6.2 Effective use of tools: potential benefits and risks

6.2.1 Summarize the potential benefits and risks of test automation and tool support for testing.

10-A

6.2.2 Recognize that test execution tools can have different scripting techniques, including data driven and keyword driven.

10-E

6.3 Introducing a tool into an organization

6.3.1 State the main principles of introducing a tool into an organization.

10-H

6.3.2 State the goals of a proof-of-concept/piloting phase for tool evaluation.

10-H

6.3.3 Recognize that factors other than simply acquiring a tool are required for good tool support.

10-H

Lesson Labs
Lesson 1 Lab 1

Discussing Software Development Models
Scenario:
Consider a scenario where you are part of a team, which needs to decide whether to follow the waterfall model, an iterative-incremental development model, or the V-model for a software development project. As a software test engineer, you are expected to analyze the given situation from the software testing perspective; compare the waterfall model, iterative-incremental models, and V-model; and propose a feasible solution.

1.

Identify the benefits of the waterfall model.
a)
Involves low risk
b)
Generates deliverables quickly


c)
Easy to manage

d)
Causes minimal wastage of time and effort
2.

True or False? Freezing the requirements and product design before coding ensures that there is minimal wastage of time and effort, and there is no rework later.

a)
True
b)
False
3.

True or False? Following a documentation-driven approach ensures that each phase in the software development life cycle has specific deliverables, for which a schedule can be set with deadlines.
a)
True

b)
False
4.

Identify the benefits of iterative-incremental development models.


a)
Generate deliverables quickly

b)
Make changes less costly
c)
Ensure minimal wastage of time and effort
d)
Follow a documentation-driven approach
5.

True or False? Gathering all requirements up-front may prevent scope-related problems in the later stages of a project life cycle.

a)
True
b)
False
6.

Identify the benefits of the V-model.
a)
Permits changes during a project life cycle


b)
Proactively tracks defects

c)
Reduces the overall project costs
d)
Produces a prototype quite early in the project life cycle
7.

True or False? Performing a corresponding testing activity for each software development activity ensures that complete testing of a software product and its related documents is performed.

a)
True
b)
False
8.

True or False? Setting a specific objective for each testing phase ensures that a software product is tested for all attributes and functionalities.
a)
True

b)
False
9.

True or False? To ensure that a software product is tested for all attributes and functionalities, tests for all the phases should be designed along with the corresponding software development activity.

a)
True
b)
False
10.

True or False? Defects detected while testing are more costly to remove than those detected during reviews early in the life cycle.

a)
True
b)
False
Lesson 2 Lab 1

Discussing Testing
Scenario:
Consider a scenario where you want to deliver a practically bug-free software product to your customer. You want to ensure that the product is thoroughly tested during and after the development process, and all the potential problems and risks are identified and appropriately addressed. To achieve this, you gain familiarity with testing and the process it follows for controlling the quality of software before releasing it to the customer.

1.

Identify the strengths of third-party testing organizations.


a)
Expertise in test project management.

b)
Expert consulting and training services.
c)
Similarity in views related to quality and business objectives.
d)
Extreme sense of ownership and responsibility for quality.
2.

True or False? Instead of repeatedly availing yourself of services from independent test agencies, you as a test leader should ask them for test plans, test cases, and suggestions related to testing activities.
a)
True

b)
False
3.

The role of a test leader can be performed by:


a)
Project Manager
b)
Quality Manager
c)
Configuration Manager


d)
Development Manager

e)
Quality Assurance Manager
4.

Which statement about test principles is true?
a)
They only affect test-planning activities.
b)
They only affect test-execution activities.
c)
They only affect early test activities, such as requirements reviews.

d)
They affect activities throughout the test life cycle.
5.

Which guidelines are recommended for testing within the project development life cycle?


a)
Analyze and design tests early.

b)
Define different test types with specific objectives.
c)
Involve testers as soon as coding is complete.
d)
Carry out testing by using tools.
6.

Identify the root cause of a defect in financial software in which an incorrect discount is calculated.
a)
Invalid discount rates were offered.
b)
Erroneous calculations of discount were included.
c)
Inaccurate calculators were used to estimate expected results.

d)
Insufficient training about performing mathematical calculations was given to the developers.
Lesson 3 Lab 1

Discussing Test Levels
Scenario:
Consider a scenario where you have just started work on a testing project and are currently in the planning phase. For better test organization and management, you want to group various test activities together. To do this, you gain familiarity with various levels of testing so that you do not miss or repeatedly test any parts of the software product under testing.

1.

What is a test level?
a)
A test type.
b)
An ISTQB certification.
c)
One or more test design specification documents.

d)
A group of test activities that are planned and controlled together.
2.

Which of the following is a test level?
a)
Functional testing
b)
Black-box testing
c)
Security testing

d)
Acceptance testing
3.

True or False? Acceptance testing demonstrates that a system meets customer and end-user requirements.

a)
True
b)
False
4.

When a new software product is purchased, it should be used first by:
a)
An independent testing team.

b)
Everyone who may eventually use the product.
c)
A small team to find out the best way to use the product.
d)
The managers to determine the projects in which it should be used.
5.

What is the order in which tests should be executed?

a)
The most important tests should be executed first.
b)
The most difficult tests should be executed first.
c)
The easiest tests should be executed first.
d)
In the order in which they are thought of.
Lesson 4 Lab 1

Discussing Test Types
Scenario:
Consider a scenario where you have just started work on a testing project and are currently in the planning phase. For better test organization and management, you have grouped various test activities together as test levels. You now want to determine ways to meet the objectives of each test level. To do this, you gain familiarity with various test types.

1.

Identify a form of static testing.
a)
Appraisal

b)
Walkthrough
c)
Assessment
d)
Gap analysis
2.

True or False? Reviews, static analysis, and dynamic testing have the same objective, which is, identifying defects.

a)
True
b)
False
3.

Which types of defects are easier to find in static testing than in dynamic testing?


a)
Deviations from standards


b)
Requirement defects

c)
Design defects
d)
Defects in functional attributes of a system
e)
Defects in nonfunctional attributes of a system
4.

Which is a success factor for reviews?

a)
Formulate clear predefined objectives for each review.
b)
Ensure that many participants are involved in a review meeting.
c)
Hold authors accountable for design mistakes.
d)
Formulate review findings in a biased and subjective way.
5.

Identify an example of functional tests.
a)
Determining the ease of use of a system.
b)
Examining the effect of high traffic on a call-center system.
c)
Determining the response time of an online ticket-booking system.

d)
Inspecting the information on an online ticket-bookings screen against the information communicated to customers.
Lesson 5 Lab 1

Planning and Estimating Tests
Scenario:
As a test manager, you have been assigned the task of creating a test plan for system testing. Before you start the test planning process and create the system test plan, you would like to evaluate your knowledge of planning and estimating tests.

1.

What is the important objective of the test planning process?

a)
Determine the test approach
b)
Plan for requirement specification
c)
Evaluate exit criteria
d)
Analyze test results
2.

The role of test completion criteria in a test plan is to:
a)
Identify when to stop test planning.

b)
Identify when to stop testing.
c)
Ensure that all tests are executed.
d)
Start test reporting.
3.

The failure-based test approach is also known as:

a)
Methodical
b)
Analytical
c)
Process or standard-compliant
d)
Regression-averse
4.

True or False? Using information from previous projects for test estimation is expert-based test estimation.
a)
True

b)
False
Lesson 6 Lab 1

Discussing Test Design Techniques
Scenario:
As a tester, you want to create test cases by referring to requirement specifications. Before applying test design techniques to create efficient test cases, you want to test your knowledge on test design techniques.

1.

What is the criterion for selecting a test design technique?
a)
The type of system.
b)
Tool support for testing.
c)
Knowledge of the testing technique.

d)
Coverage of the system by the testing technique.
2.

True or False? An event that changes the behavior of the application identifies the boundary between two classes.

a)
True
b)
False
3.

Applying both specification-based and structure-based techniques can be beneficial because:
a)
More techniques will find more defects.
b)
The defect found by one technique will be validated by finding it again with another technique.

c)
They find different types of defects.
d)
Only one of them will not be able to check all requirements.
4.

Experience-based techniques are different from specification-based techniques because experience-based techniques depend on:
a)
The understanding of a tester of the system structure rather than on system requirements.
b)
The age of testers.
c)
Functional requirements of the system rather than on the viewpoint of an individual.

d)
The viewpoint of an individual rather than on functional requirements of the system.
Lesson 7 Lab 1

Identifying Test Cases
Scenario:
You are working on a hospital management system project. The requirements specification includes:

· In the 'Search for a Patient' window, patient names will be accepted as a combination of letters ‘A-Z’, space, apostrophe, and underscore. It will not accept any character in lowercase.

· Feedback will be accepted only as lowercase chars ‘a-z’ but no alphanumeric characters will be accepted.

· Reports can be generated only between 4th-10th and 25th-30th day of month.

As a test team member you need to create test cases to verify the requirements. You will use boundary value analysis and equivalence partitioning techniques and create two test cases for each requirement.

1.

Create two test cases using the boundary value analysis technique to test the functionality of the patient name field.

2.

Create two test cases using equivalence partitioning to test the functionality of the patient name field.

3.

Create two test cases using the boundary value analysis technique to test the functionality of the feedback column.

4.

Create two test cases using equivalence partitioning to test the functionality of the feedback column.

5.

Create two test cases using the boundary value analysis technique to test the functionality of reports generation.

6.

Create two test cases using equivalence partitioning to test the functionality of reports generation.

Lesson 8 Lab 1

Implementing Tests
Scenario:
You have created possible test cases to test the functionality of different operations for the software system of OGC Hospital Management Solution. Now you need to group the test cases and create test procedures. In addition, you need to execute the test cases and log the results of the execution. Further you need to raise incidents for failed test cases and create an incident report. Possible test cases include:

· Enter a valid user name and password and click the Login button to log in to the software system.

· Add details of a new patient in the Add Patient Screen and click the Add button.

· Modify the details of existing patients and click the Modify button.

· Check if address details of existing and new patients are being fetched from the COBOL system.

· Launch the PayPal website by clicking the Pay button on the discharge screen.

· Whether 100 users can connect to the SQL server database.

· Generate weekly reports.

· Generate monthly reports.

1.

Create a test suite for the test cases that have high-level objectives.

2.

Create a test procedure to organize the sequence of steps for test cases.

3.

Log the results of the test cases.

4.

Create a test incident report for the incidents reported during test execution.

Lesson 9 Lab 1

Generating Test Reports
Data Files:
· log.doc

Setup:
Before You Begin:

From the C:\085046Data\Reporting_Tests folder, open the log.doc file.

Scenario:
You have created test logs and incident reports by executing test cases for the software system of the OGC Hospital Management Solution. Now you need to identify test metrics and parameters to measure the quality of the OGC Hospital Management Solution. In addition, you need to create a test summary report and perform test closure activities.

1.

Write the information that you will include in the test metrics.

2.

Create a test summary report with inputs from the test log.

3.

List the testware in the testing process.

4.

List the tasks for test closure activities.

Lesson 10 Lab 1

Identifying Testing Tools
Scenario:
You have been assigned the task of completing test closure activities of the OGC Hospital Management Solution after performing testing activities manually. You need to automate the testing process by using different automation tools. As a test manager, you need to identify automation tools that can be used to perform different testing activities for the OGC Hospital Management Solution.

1.

Identify the tools that you can use for the management of testing and tests.
a)
Review process, static analysis, and modeling tools.
b)
Test design and test data preparation tools.

c)
Test management, requirements management, incident management, and configuration management tools.
d)
Test execution, the test harness, test comparators, and security tools.
2.

Identify the tool that you can use to examine source code without executing it.
a)
Modeling tool

b)
Static analysis tool
c)
Compiler
d)
Review process support tool
3.

Identify the tool that you can use to test security by trying to break into a system that is either protected by a security tool or unprotected.
a)
Test execution tool
b)
Test harness tool
c)
Coverage measurement tool

d)
Security testing tool
4.

Identify the tool that enables you to monitor and report on the behavior of a software system under a number of simulated conditions.


a)
Monitoring tool
b)
Functional testing tool

c)
Performance testing tool
d)
Dynamic analysis tool
Glossary

acceptance criteria: A set of conditions that a system needs to meet in order to be accepted by end users.

acceptance testing: Also known as user acceptance testing, is testing performed with respect to user needs, requirements, and business processes. This testing is performed to determine whether a system meets the acceptance criteria, and to enable the customer, users, and other stakeholders to determine whether to formally accept the system or not.

accuracy: The capability of a software product to provide the agreed and correct output with the required degree of precision.

action: The response of the application to an input.

actual result: The behavior or response of a software application that you observe when you execute the action steps in the test case.

ad hoc integration: An integration approach in which components are integrated in the order in which they are developed.

agile software development model: A software development model that is based on the generic iterative-incremental model, where teams collaboratively work by dividing project tasks into small increments, involving only short-term planning, to implement various iterations in a project life cycle.

alpha testing: Simulated or actual testing that is performed by potential customers, users, or an independent testing team at the development organization’s site, but outside the development organization.

anomalous events: Occurrences that happen before and after an unexpected event.

automation tools: A collection of software products or applications designed to automate manual testing tasks in the testing process.

backbone integration: An integration approach in which a frame or backbone is created and components are progressively integrated into it.

beta testing: Operational testing that is performed by potential and/or existing customers or users at an external site, without any involvement of the development organization.

big-bang testing: An integration approach in which components or subsystems are combined all at once into a subsystem, rather than in stages.

black-box testing: A type of testing that includes activities related to testing functional or nonfunctional attributes of a system or its components, without any references to the internal structure of the system or the components.

bottom-up integration: An incremental approach in which the components that exist at the lowest level in the component hierarchy are tested first, with higher-level components being simulated by test drivers. Then, the tested components are used to test higher-level components. This process is repeated until the component at the highest level in the component hierarchy is tested.

boundary value analysis: A test case design technique that allows you to identify bugs that occur on or around the boundaries of an equivalence partition.

business process-based testing: A functional testing approach in which test cases are designed based on the descriptions and/or knowledge of business processes.

cause-effect graphic testing: A black-box test design technique used to identify possible causes of a problem by using the cause-effect diagram.

code coverage: An analysis that determines the portion of code in software executed by a set of test cases.

Commercial Off-The-Shelf (COTS) software products: Products that are developed for the general market, that is, for a large number of customers, and are delivered to many customers in the same format.

component: The smallest software item that can be tested in isolation.

component integration testing: Also referred to as integration testing in the small, is testing performed to detect defects in interfaces and interaction between integrated components.

component testing: Also referred to as module, program, or unit testing, is the testing of software components, which are separately testable.

condition coverage: A metric used to calculate the number of all condition or sub-expression outcomes in code that are executed by a test suite.

condition determination coverage: A metric to calculate the number of single condition outcomes that can independently affect the decision outcome.

conditions: Inputs or a combination of inputs required for testing software.

configuration management: A task of maintaining and controlling changes to all entities of a system.

configuration management tools: Tools used to keep track of different versions, variants, and releases of software and test artifacts such as design documents, test plans, and test cases.

conformance testing tools: Tools used to check that a software product, process, computer program or system adheres to a defined set of standards, conventions, or regulations in laws and similar specifications.

contract acceptance testing: Testing that is performed based on the contract between a customer, for whom a software product is developed specifically, and the development organization. The customer, then uses the results of acceptance tests to determine whether the product is free of major defects and the terms defined in the development contract have been met.

control flow structure: The sequence in which instructions are executed through a component or system.

coverage: A degree that measures the amount of testing performed by a collection of test cases.

coverage measurement tools: Tools used to identify and calculate coverage items in program code.

cyclomatic complexity: A code metric provided by static analysis tools that specifies the number of independent paths through a program; this measurement enables you to identify complex and high-risk areas of code.

data flow structure: The sequence in which data items are accessed or modified by code.

data-driven testing: A scripting technique for test execution tools that allows you to store test input and expected results in one or more central data sources or databases.

debugging: The process of finding, analyzing, and removing causes of failure in a software product.

debugging tools: Tools used by developers to identify defects in program.

decision coverage: A metric used to calculate the number of executed branch outcomes in code.

decision table: A table showing combinations of inputs and their associated actions.

decision table testing: A black-box test design technique in which test cases are designed from a decision table.

decision testing: A test case design technique for a software component to ensure that the outcome of a decision point or branch in code is tested.

defect: Also referred to as a bug, a fault, an internal error, or a problem, is a flaw in a software product or its components that can cause the product or the components to fail to perform their required functions.

defect density: The ratio between the number of defects found in a component or system and size of the component or system.

defect masking: An occurrence in which one defect prevents the detection of another.

documentation tools: Tools used to provide support for and automation of managing various testing documents such as the test policy, test strategy, and test plan.

driver: A special-purpose software component, which is used to replace a component that calls another component; a driver calls the component to be tested and then receives the response of the called component.

dynamic analysis tools: Tools used to find defects in code when a software application is running.

dynamic testing: A type of testing that involves executing the software of a system or its components on a computer.

efficiency: The capability of a software product to provide appropriate performance, relative to the amount of resources used under stated conditions.

entry criteria: A set of conditions for ensuring that testing activities can start for a system.

environmental needs: Special additions or changes to the environment that must be implemented in order to run a test case.

equivalence partitioning: A black-box testing technique that you can use to partition groups of input conditions to generate the same kind of output.

equivalence partitions: Specific partitions that represent a set of valid or invalid partitions for input conditions.

error: Also referred to as a mistake, is a human action that generates an incorrect result.

error guessing: A type of test case design technique that enables you to make a meaningful guess about bugs that are likely to be present in the software application or system.

exhaustive testing: A test approach in which a software product is tested for all combinations of possible input values and preconditions.

exit criteria: A set of conditions to ensure that the testing process is complete and the object under testing is ready for the next stage.

experience-based techniques: Black-box techniques used to derive test cases that draw on the knowledge, intuition, and skills of individuals.

exploratory testing: An informal testing technique in which test planning and execution run in parallel.

failure: The deviation of a software system or its components from their expected delivery, services, or results.

failure rate: The frequency of tests failing per unit of measure.

fault attack: A technique used to improve testing coverage by deliberately introducing faults in code.

functional incremental integration: An incremental approach in which components or subsystems are combined and tested in the order in which basic functionalities start working.

functional requirements: Requirements that determine the functionality or behavior of a software system.

functional testing: A type of testing that is based on an analysis of functional specifications of a system or its components. It includes all kinds of tests that verify the input/output behavior of a system and its components.

functional testing tool: A type of testing tool that you can use to test the functionality of software as mentioned in the software requirement specifications.

functionality: The capability of a software product to provide functions that address explicit and implicit requirements from the product against specified conditions.

horizontal traceability: Tracing requirements for a level of testing using test documentation from the test plan to the test script.

IEEE test case specification template: A document that provides the structure for writing test cases.

impact: A component of the incident report that determines the actual effect of the incident on the software and its users.

impact analysis: The assessment of changes required to be made to the different layers of development documentation, test documentation, and software components, in order to implement a given change to the original requirements.

incident management tools: Tools used to store and manage incidents, which are in the form of defects, failures, or anomalies.

incident report: A document that records the description of each event that occurs during the testing process and that requires further investigation.

incident report identifier: A unique identifier of each incident report generated during test execution.

incidents: Events that occur during the testing process that require investigation.

incremental testing: An integration approach in which components or subsystems are integrated and tested one or some at a time, until all the components or subsystems are integrated and tested.

independence of testing: Separation of testing responsibilities, which encourages the accomplishment of objective testing.

informal review: A type of review that is not based on a formal documented procedure.

input specifications: Actual inputs that are required to execute a test case.

inspection: A type of review that involves visual examination of documents to detect defects, such as violations of development standards and nonconformance to higher-level documentation.

instrumentation: Insertion of additional code in the existing program in order to count coverage items.

integration: The process of combining components or systems into larger structural units or subsystems.

integration management tools: Tools used to provide the integration of different kinds of tools to make test management more efficient and simple.

integration testing: Testing performed to detect defects in interfaces between components, and in the interactions between the integrated components and systems, such as the operating system, file system, and hardware.

interoperability: The capability of a software product to collaborate with one or more specified systems, subsystems, or components.

interoperability testing: A type of functional testing that enables you to determine the interoperability of a software product; it enables you to prove that the end-to-end functionality between two or more communicating systems or components is in accordance with the requirements.

iterative-incremental development models: Software development models that begin with an initial requirements specification phase, similar to the waterfall model, and end with implementation and maintenance phases, with cyclical transactions in between the phases.

keyword-driven testing: A scripting technique that uses data files to store test input, expected results, and keywords related to a software application being tested.

LCSAJ testing: A white-box test design technique that you can use to design test cases for a software component that executes LCSAJs.

load testing: A type of performance testing that is conducted to determine the behavior of a system or its components with increasing load, where load is a series of inputs that simulates a group of transactions.

maintainability: The ease with which a software product can be modified to correct defects, modified to meet new requirements, modified to make future maintenance easier, or adapted to a changed environment.

maintainability testing: A type of nonfunctional testing that includes activities related to testing the ease with which a software product can be modified to fix defects, to meet new requirements, or to easily maintain in the future, or customized to a different environment.

maintenance testing: A type of testing that includes activities related to examining the changes made to an operational system or the impact of a changed environment on an operational system.

measurement: A technique of assigning a number or category to measure the attribute of an entity.

metrics: Documents that you can use to measure the quality of software.

modeling tools: Tools used to validate models of the software system by checking inconsistencies and defects in the data model, object model, or state model.

monitor: A tool or hardware device that runs in parallel to an assembled component under integration tests. It manages, records, and analyzes the behavior of the assembled component or subsystem.

monitoring tools: Tools used to continuously keep track of the status of the system.

multiple condition coverage: A metric used to calculate the number of combinations of all single condition outcomes within one statement that are executed by a test case.

nonfunctional requirements: Requirements specifying constraints that determine the functioning or quality, such as reliability, efficiency, usability, maintainability, and portability, of a software system.

nonfunctional testing: A type of testing that includes activities related to testing the attributes of a system or its components that are not associated with its functionality; for example reliability, efficiency, usability, maintainability, and portability.

operational testing: A type of testing that includes activities related to evaluating a system or its components in their operational environment.

output specifications: Expected outputs from the system to verify the execution of a test case.

performance testing: A type of nonfunctional testing that includes activities related to testing the performance of a software product. Here performance refers to the degree to which a system or its components perform their specified functions within the given constraints regarding processing time and throughput rate.

performance testing tool: A type of testing tool that you can use to determine the speed or effectiveness of a computer, network, or software program by simulating the load on the software system.

portability: The ease with which a software product can be transferred from one hardware or software environment to another.

portability testing: A type of nonfunctional testing that includes activities related to testing the ease with which a software product can be transferred from one hardware or software environment to another.

preventive test approach: A strategy in which the testing team is involved at the beginning of the SDLC.

probe effect: The effect on the system that is caused by the measurement instrument when the system is being measured by a tool.

product risk: The risk of not implementing user, customer, or stakeholder requirements in the software.

profiler: A performance analysis tool that can be used to measure the behavior of a program during its execution.

project risk: The risk involved in managing and controlling the project to meet its objectives.

protocol testing tools: Tools used to test various kinds of protocols.

prototyping model: A software development model in which a working sample of the final software product, referred to as a prototype, is created and tested, so that the final software product can be created based on the prototype.

quality assurance: Part of quality management that is focused on providing confidence that all quality requirements will be fulfilled.

quality characteristics: A set of attributes of a software product using which the quality of the product can be described or evaluated.

quality triangle: Also referred to as the scope triangle; shows the relationship between time, cost, and quality—the three most important factors that determine the success or failure of a project.

rapid application development: A software development model that involves gathering user requirements to create an initial system design and a prototype, which go through multiple iterations of user testing to clearly define user requirements and to design the final system.

Rational Unified Process: A flexible software development process structure that is based on the generic iterative-incremental development model, and can be customized by software development organizations according to their project needs.

reactive test approach: A strategy in which the testing team is involved late in the SDLC.

regression testing: A type of testing that includes activities related to testing a previously tested program. It is typically done after the bugs identified in a software product are fixed.

regulation acceptance testing: Also known as compliance acceptance testing, is testing that is performed against any regulations, such as governmental, legal, or safety regulations, that must be adhered to by a software product.

release note: A document that specifies the items to be tested, their configuration, current status, and other information, delivered by the software development team to the testing team and to other stakeholders at the onset of the test execution phase.

reliability: The ability of a software product to perform its required functions under stated conditions for a specified period, or for a specified number of operations.

reliability testing: A type of nonfunctional testing that includes activities related to testing the ability of a software product to perform its required functions under specific conditions for a specified period, or for a specified number of times.

requirements: Functionalities and constraints that end users expect from a software system.

requirements management tools: Tools used to track changes in requirements as well as to maintain the traceability of requirements to test procedures.

requirements-based testing: A functional testing approach in which test cases are designed based both on test objectives and conditions.

retesting: Also referred to as confirmation testing, is a type of testing that includes activities related to executing test cases that failed the last time they were run, to validate that corrective actions have been successfully implemented.

review: A type of static testing that involves activities related to evaluating a product or project status to determine the discrepancies between planned and actual results, and to suggest improvements, if any.

review process support tools: Tools to perform a formal review of documents that are accessed by people who are located in different geographical locations.

risk: The possibility of an outcome being incorrect or undesirable.

risk analysis: The process of categorizing the identified risks based on their likelihood and impact.

risk identification: The process of identifying product and project risks using techniques such as interviews, assessments, risk workshops, and checklists.

risk-based testing: The process of organizing test effort to reduce the number of product risks in the completed system.

robustness testing: Also known as negative testing, is a type of testing that includes activities related to testing the degree to which a system or its components can function correctly if invalid inputs or stressful environmental conditions are used, such as operating errors and hardware failure.

root cause: The source of a defect that when fixed removes or decreases the occurrence of the defect.

root cause analysis: An analysis technique designed to identify the root causes of defects.

security: The capability of a software product to prevent unauthorized access, whether unintentional or deliberate, to programs and data.

security testing: A type of functional testing that enables you to determine the security of a software product; it enables you to investigate functions related to the detection of threats; for example, testing firewalls that detect threats such as viruses and other malicious programs.

security testing tools: Tools that enable you to test software systems against external attacks or computer viruses.

simulator: Also referred to as an emulator, is a device, program, or system that is used during system testing; it behaves like a system when provided with a controlled set of input values.

smoke testing: Also referred to as sanity or confidence testing, is a type of testing that includes activities related to executing a subset of all of the test cases that cover the main functionality of a system or its components to determine that the most critical functions of the system or its components work well.

software development model: The process used to create a software product, from the initial conception of the idea to the public release of the product.

software quality: The degree to which a component, system, or process meets specified requirements, and/or the needs and expectations of end users and customers.

software testing: The process of evaluating a software product with the intent of finding defects in it, if any, and improving its quality.

source code testing tools: A type of testing tool that you can use to identify defects in program code and fix the defects.

specification-based design techniques: Dynamic techniques that are used for functional and nonfunctional testing.

spiral model: A software development model that involves creating an initial prototype of the final software product, and then carrying out various cycles of adding new functionality and releasing subsequent prototypes, with the prototype becoming larger with each iteration.

state table: A grid that shows the transition of states along with each possible event that can change the state of a system.

state transition diagram: A graphical representation of the various states of a component or system.

state transition testing: A test case design technique that enables you to test the transition from one state to another in a software application.

statement coverage: A metric used to calculate the number of executed statements in code.

statement testing: A test case design technique for testing a software component to ensure that every possible statement in code is tested.

static analysis: A type of testing which includes activities related to analyzing test items, such as requirements specifications and code, without executing them.

static analysis tools: Tools used by software developers and testers to examine source code without executing it.

static testing: A type of testing that involves examining a software product or its components at specification or implementation level, without executing the product or its components.

stress testing: A type of performance testing that is conducted to determine the behavior of a system or its components at or beyond the limits of their specified or projected workloads, or with reduced availability of resources, such as access to servers or memory.

structure-based design techniques: Dynamic techniques that are based on the source code used in software.

stub: A special-purpose software component, which is used to test another component that calls or is dependent on the stub; a stub replaces a component that is called from the component under test.

suitability: The capability of a software product to provide an appropriate set of functions for specified tasks, and customer and end-user requirements.

summary: A component of the incident report that provides a description about the actual incident.

system integration testing: Also known as higher-level integration testing or integration testing in the large, is testing performed to detect defects in interfaces and interaction between components, and external systems and packages.

system testing: The process of testing an integrated system to validate that it meets the specified requirements.

technical review: A type of review in which a peer group performs a discussion related to achieving a consensus on the technical approach to a document.

test approach: The strategy followed by the testing team to perform test activities.

test automation: A method of implementing software tools to achieve automatic control and reduce human intervention in performing testing tasks.

test basis: A collection of all documents that are used to gather the requirements of a component or system.

test case: A set of input values, preconditions for execution, expected results, and postconditions for execution, that are developed for a particular test objective or test condition.

test case: A document that contains detailed instructions for testing the functionality of a software application.

test case specification identifier: A unique number given to a test case to distinguish it from other test cases.

test closure: A phase of the testing process in which you collect data from completed test activities to consolidate experience such as testware, facts, and numbers.

test comparators: Types of testing tools that you can use to compare the actual result produced by the software under test with the expected result that it should produce.

test condition: An event or item that can be tested using one or more test cases.

test control: A test management task that includes developing and applying a set of corrective actions to get a test project on track, when monitoring shows a deviation from what was planned.

test data: The collection of input values required to execute test cases.

test data preparation tools: Tools used to manipulate databases, files, or data transmissions to set up test data to be used during the execution of tests.

test design: A technique to describe the testing approach to test an item.

test design specification: A document that specifies the test condition for a test item and approach to testing.

test design tool: A type of testing tool that you can use to create test cases by generating test input or executable tests from requirements.

test environment: The hardware, software, simulators, data, and supporting elements required to perform testing activities.

test estimation: An activity to calculate effort and cost required for testing.

test execution tools: Tools used to execute tests automatically with stored input and expected outcomes.

test harness tools: Tools used to test components of a software system by simulating the environment in which that test object will execute.

test item: An individual element or function within a test object to be tested.

test leader: Also called a test manager or test coordinator, is a person responsible for managing testing activities and resources, and evaluating a test object. Test leaders are individuals who direct, control, administer, plan, and regulate the evaluation of test objects.

test levels: Groups of testing activities that are organized and managed together in a project.

test log: A document that records relevant details about the execution of one or more test cases in chronological order.

test management: The process of organizing and managing testing activities.

test management tools: Tools used to manage tests and testing activities.

test monitoring: A test management task used to check the progress of test execution.

test oracle: An entity that is used to determine the expected result of a test.

test plan: A document that describes the scope, effort estimates, approach, resources, and schedule of testing activities to be performed. It typically contains features to be tested, tasks to be performed, responsibilities of members of the testing team, the environment in which testing is to be done, test design techniques, entry and exit criteria to be used, the reason for selecting specific test strategies and techniques, and risks that require contingency planning.

test plan identifier: A unique number given to a test plan.

test planning: An activity that involves documenting the approach to testing, effort required for the testing process, and risks involved in testing.

test policy: A high-level document describing the principles, approach, and objectives of an organization regarding testing.

test procedure: A document that describes the sequence of steps for the execution of a test.

test script: A sequence of instructions that you can use to test the functionality of a software application.

test status: A component of a test log that specifies whether a test case has passed or failed.

test strategy: A high-level description of test activities to be performed for an organization or a set of projects.

test suite: A logical collection of test cases that you can use to test a software application.

test summary report: A summary of the results of testing activities that are performed during the testing phase.

test type: A group of test activities that are intended to test a system or its components with focus on a specific test objective. The activities may include testing the functionality of a system or its components; their nonfunctional characteristics, such as usability and reliability; the design or structure of the system and its components; or verification of the correctness of changes made while debugging a system. Based on the objectives, the activities in a test type may be spread across one or more test levels or phases.

test-driven development: Also known as test-first approach, is a software development method, in which test cases are developed and often automated before the software components are developed to run those test cases.

tester: A skilled professional who is involved in the testing of a software component or system. Testers are experts in executing tests and incident reporting.

testware: Objects, produced during the test process, required to plan, design, and execute tests.

top-down integration: An incremental approach in which the component that exists at the top of the component hierarchy is tested first, with lower-level components being simulated by stubs. Then, the tested components are used as drivers to test lower-level components. This process is repeated until the components at the lowest level are tested.

traceability: The ability of test conditions to be linked back to the items in specifications and requirements.

usability: The capability of a software product to be understood, learned, used, and attractive to the user, when used under specified conditions.

usability testing: A type of nonfunctional testing that includes activities related to testing the extent to which a software product is understood, easy to learn and operate, and attractive to end users under specific conditions.

use case: A step-by-step description of a task performed by a user on a system.

use case testing: A black-box testing technique in which test cases are derived from use cases.

user acceptance testing: A testing type that determines the fitness for use of the system by end users.

V-model: A software development model in which development phases follow a sequential path of execution, similar to the waterfall model, with the difference that phases subsequent to the coding phase are bent upward to form a V shape, instead of descending in a linear manner.

validation phases: Stages of the V-model that involve examining work products to check that they meet the needs of end users or customers.

verification phases: Stages of the V-model that involve developing, reviewing, and testing work products to ensure that products meet specified requirements.

version control: Management of versions of documents, source code, and programs.

vertical traceability: Tracing requirements through the development process from the requirement specification to components developed.

walkthrough: A type of review in which the author presents a document step-by-step, with the objective of gathering information and establishing a common understanding of its content.

waterfall model: A software development process in which development activities are performed in a sequential, cascading manner, similar to a waterfall.

white-box testing: Also referred to as code-based testing, glass-box testing, logic-coverage testing, logic-driven testing, or structure-based testing, is a type of testing that includes activities related to analyzing the internal structure of a system or its components.

